30 research outputs found

    A general method for the design and fabrication of shape memory alloy active spring actuators

    Get PDF
    Shape memory alloys have been widely proposed as actuators, in fields such as robotics, biomimetics and microsystems: in particular spring actuators are the most widely used, due to their simplicity of fabrication. The aim of this paper is to provide a general model and the techniques for fabricating SMA spring actuators. All the steps of the design process are described: a mechanical model to optimize the mechanical characteristic for a given requirement of force and available space, and a thermal model for the estimation of the electrical power needed for activation. The parameters of both models are obtained by experimental measurements, which are described in the paper. The models are then validated on springs manufactured manually, showing also the fabrication process. The design method is valid for the dimensioning of SMA springs, independently from the external ambient conditions. The influence on the actuator bandwidth was investigated for different working environments, providing numerical indications for the utilization in underwater applications. The spring characteristics can be calculated by the mechanical model with an accuracy of 5%. The thermal model allows one to calculate the current needed for activation under different ambient conditions, in order to guarantee activation in the specific loading conditions. Moreover, two solutions were found to reduce the power consumption by more than 40% without a dramatic reduction of bandwidth

    Bioinspired Soft Actuation System Using Shape Memory Alloys

    Get PDF
    Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SMA springs is presented, which is combined with a flexible braided sleeve featuring a conical shape and a motor-driven cable. This robot arm is able to perform tasks in water such as grasping, multi-bending gestures, shortening and elongation along its longitudinal axis. The whole structure of the arm is described in detail and experimental results on workspace, bending and grasping capabilities and generated forces are presented. Moreover, this paper demonstrates that it is possible to realize a self-contained octopus-like robotic arm with no rigid parts, highly adaptable and suitable to be mounted on underwater vehicles. Its softness allows interaction with all types of objects with very low risks of damage and limited safety issues, while at the same time producing relatively high forces when necessary

    Metabolomic Profile of Young Adults Born Preterm

    Get PDF
    Prematurity is a risk factor for the development of chronic adult diseases. Metabolomics can correlate the biochemical changes to a determined phenotype, obtaining real information about the state of health of a subject at that precise moment. Significative differences in the metabolomic profile of preterm newborns compared to those born at term have been already identified at birth. An observational case–control study was performed at the University Hospital of Siena. The aim was to evaluate and compare the metabolomic profiles of young adults born preterm to those born at term. Urinary samples were collected from 67 young adults (18–23 years old) born preterm (mean gestational age of 30 weeks, n = 49), and at term of pregnancy (mean gestational age of 38 weeks, n = 18). The urinary spectra of young adults born preterm was different from those born at term and resembled what was previously described at birth. The Random Forest algorithm gave the best classification (accuracy 82%) and indicated the following metabolites as responsible for the classification: citrate, CH2 creatinine, fumarate and hippurate. Urine spectra are promising tools for the early identification of neonates at risk of disease in adulthood and may provide insight into the pathogenesis and effects of fetal programming and infants’ outcomes

    Prospettive e potenzialitĂ  della digitalizzazione del settore forestale in Italia

    Get PDF
    Information and Communication Technologies (ICT) play a key role for improving the implementation of sustainable forest management at local, regional, and global level. The ICT potential to easily exploit a wider and more up-to-date set of information on the economic, environmental, and so- cial value of forests is of relevant help for the daily work of technicians, land owners, and companies in boosting the efficiency and effectiveness of forest management. The concept of “Precision Forestry” (PF) was developed from the early 2000s, as a branch of precision farming or precision agriculture. PF includes the use of ICT, remote and proximal sensing technologies, and other devices to coordinate and control several processes on a spatial scale (“Precision”) for monitoring, planning, and managing forest resources (“Forestry”). The aim of this monography is to collect and describe some of the most important PF experiences applied or potential- ly useful for the Italian forestry sector. It may represent a reference guide for the stakeholders, such as forest owners, professional technicians, public administrators, and policy makers. The book includes eleven chapters reviewing the main tech- nological tools available in the Italian context and the most recent advances of ICT in forestry, also focusing on the strengths and weaknesses of their practical implementation. The opportunities and challenges of implementing PF meth- ods, practices and technologies are also discussed. In the first two chapters the precision forestry concept and its historical development are introduced. In the third chap- ter some basic elements of ICT, GIS, Global Navigation Satellite Systems (GNSS), remote/proximal sensing, and related technologies which are essential for a better compre- hension of PF applications are recalled. In chapter 4 recent advances in large scale forest inventories with a focus on mapping and on the spatial estimation of forest variables integrating field surveys and multisource re- motely sensed data are described. Current advancements in the acquisition of field information including Terrestrial La- ser Scanning (TLS), new digital dendrometers, tree-talkers, terrestrial cameras, and APP for portable devices such as smartphones or tablets for dendrometric tree measures and new citizen science applications to support quantitative and qualitative spatial estimation of forest variables over large areas (i.e., forest health, fuel types) are also presented. The chapter ends up with the description of some experiences in the implementation of Forest Information Systems in Italy to provide a simple open-access to such new generation of spatial forest information. In chapter 5 PF tools, instruments, and technologies to sup- port sustainable forest management are illustrated. APPs developed to acquire field plots data to simulate manage- ment operations, the application of photogrammetric tech- nologies from Unmanned Aerial Vehicles and TLS data for monitoring with high-spatial scale forest monitoring and for acquiring indicators at single tree level are presented. A de- tailed description of new user-friendly tools for forest roadplanning, design and construction, as well as forest opera- tion planning is also included. Precision forest tree farming (with particular reference to poplar cultivation), useful to promote and increase the prof- itability and sustainability of forest plantations within the Italian context is described in chapter 6. The innovation and enhancement within the supply chain of wood plantations (from planting to harvesting, including monitoring and identification of stress) by soil proximal sensing techniques, Early Warning Systems, and specific software are highlight- ed. Considering the even higher market demands, promoted by the large-scale planting programs for climate changes mit- igation and the demands for propagation material for en- vironmental recovery, innovative techniques and methods supported by ICT in the forest nursery sector are described in chapter 7. In chapter 8 available technologies related to precision har- vesting are analyzed and described taking into consideration the wood chain efficiency, by means of improved commu- nications between the owner/buyer and operators as well as among machineries used in forest operations, health and safety of forest operators, environmental impacts mitigation and recovery, and operators training. Advanced communi- cation systems and sensors for the exchange of data and information between machines, machine-equipments and/or machine-operators, teleoperations and automation are also described. Chapters 9 and 10 are related to wood products traceabil- ity, timber quality assessment as well as the technologies for the optimization of wood transformation processes. The concepts of wood product traceability and tracing, togeth- er with latest digital technologies for the identification and tracking of the logs (i.e., fingerprinting and RFID), are de- tailly reported. Chapter 11 is finally dedicated to the relationship between the EU policy framework and the digitalization process in both agricultural and forestry sectors. The book summarizes, under a proactive and homogeneous framework, PF methods, tools and technologies in relation with the digital transition of the Italian forestry sectors. The authors hope this book will be useful for improving the implementation of sustainable forest management practic- es at all levels in Italy, providing a comprehensive review useful for policy makers, technicians, forestry owners and students

    Development of the functional unit of a completely soft octopus-likerobotic arm

    No full text
    In the presented paper the realization of an artificial functional unit of muscular hydrostat inspired by the octopus is shown. The octopus has been chosen because it shows high manipulation capabilities and dexterity without a skeletal support, thus it is a good example of Embodied Intelligence. Inspiration from Nature concerns the features that are interesting from a robotic point of view for the development of an artificial muscular hydrostat: in particular actuators arrangement and their antagonistic mechanism. The main focus was on the two key elements of the unit: soft actuators and support structure. Shape memory alloys (SMA) has been chosen for actuation technology, whereas the support structure is a braided sleeve, that provides spatial continuity to the action of the actuators. Two contiguous units have been built and tested in water. Capabilities of shortening, elongation and bending have been observed and their performances evaluated. A maximum elongation of 43% has been recorded from shortened to elongated condition, with a diameter variation of 25%, finding a good match with the expected results from the support structure models. Relative angle between extremities has been measured during bending in two conditions and their efficiency has been compared

    Design and development of a soft robotic octopus arm exploiting embodied intelligence

    No full text
    The octopus is a marine animal whose body has no rigid structures. It has eight arms mainly composed of muscles organized in a peculiar structure, named muscular hydrostat, that can change stiffness and that is used as a sort of a modifiable skeleton. Furthermore, the morphology of the arms and the mechanical characteristics of their tissues are such that the interaction with the environment, namely water, is exploited to simplify the control of movements. From these considerations, the octopus emerges as a paradigmatic example of embodied intelligence and a good model for soft robotics. In this paper the design and the development of an artificial muscular hydrostat are reported, underling the efforts in the design and development of new technologies for soft robotics, like materials, mechanisms, soft actuators. The first prototype of soft robot arm is presented, with experimental results that show its capability to perform the basic movements of the octopus arm (like elongation, shortening, and bending) and demonstrate how embodiment can be effective in the design of robots

    Soft Robot Arm Inspired by the Octopus

    No full text
    The octopus is a marine animal whose body has no rigid structures. It has 8 arms composed of a peculiar muscular structure, named muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and it can be controlled through combined contractions of the muscles. The muscular hydrostat can better be seen as a modifiable skeleton. Furthermore, the morphology the arms and the mechanical characteristics of their tissues are such that the interaction with the environment, namely water, is exploited to simplify control. Thanks to this effective mechanism of embodied intelligence, the octopus can control a very high number of degrees of freedom, with relatively limited computing resources. From these considerations, the octopus emerges as a good model for embodied intelligence and for soft robotics. The prototype of a robot arm has been built based on an artificial muscular hydrostat inspired to the muscular hydrostat of the Octopus vulgaris. The prototype presents the morphology of the biological model and the broad arrangement of longitudinal and transverse muscles. Actuation is obtained with cables (longitudinally) and with SMA springs (transversally). The robot arm combines contractions and it can show the basic movements of the octopus arm, like elongation, shortening, and bending
    corecore