3,587 research outputs found
Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710
Aims. The observation of gamma -ray flares from blazar 0836+710 in 2011,
following a period of quiescence, offered an opportunity to study correlated
activity at different wavelengths for a high-redshift (z=2.218) active galactic
nucleus. Methods. Optical and radio monitoring, plus Fermi-LAT gamma-ray
monitoring provided 2008-2012 coverage, while Swift offered auxiliary optical,
ultraviolet, and X-ray information. Other contemporaneous observations were
used to construct a broad-band spectral energy distribution. Results. There is
evidence of correlation but not a measurable lag between the optical and
gamma-ray flaring emission. On the contrary, there is no clear correlation
between radio and gamma-ray activity, indicating radio emission regions that
are unrelated to the parts of the jet that produce the gamma-rays. The
gamma-ray energy spectrum is unusual in showing a change of shape from a power
law to a curved spectrum when going from the quiescent state to the active
state.Comment: 11 pages, 10 figures, Accepted for publication in A&
OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS
OH is a key species in the water chemistry of star-forming regions, because
its presence is tightly related to the formation and destruction of water. This
paper presents OH observations from 23 low- and intermediate-mass young stellar
objects obtained with the PACS integral field spectrometer on-board Herschel in
the context of the Water In Star-forming Regions with Herschel (WISH) key
program. Most low-mass sources have compact OH emission (< 5000 AU scale),
whereas the OH lines in most intermediate-mass sources are extended over the
whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission
is correlated with various source properties such as the bolometric luminosity
and the envelope mass, but also with the OI and H2O emission. Rotational
diagrams for sources with many OH lines show that the level populations of OH
can be approximated by a Boltzmann distribution with an excitation temperature
at around 70 K. Radiative transfer models of spherically symmetric envelopes
cannot reproduce the OH emission fluxes nor their broad line widths, strongly
suggesting an outflow origin. Slab excitation models indicate that the observed
excitation temperature can either be reached if the OH molecules are exposed to
a strong far-infrared continuum radiation field or if the gas temperature and
density are sufficiently high. Using realistic source parameters and radiation
fields, it is shown for the case of Ser SMM1 that radiative pumping plays an
important role in transitions arising from upper level energies higher than 300
K. The compact emission in the low-mass sources and the required presence of a
strong radiation field and/or a high density to excite the OH molecules points
towards an origin in shocks in the inner envelope close to the protostar.Comment: Accepted for publication in Astronomy and Astrophysics. Abstract
abridge
Supergravity Duals to the Noncommutative N=4 SYM theory in the Infinite Momentum Frame
In this work the construction of supergravity duals to the noncommutative
SYM theory in the infinite momentum frame but with constant
momentum density is attempted. In the absence of the content of
noncommutativity, it has been known for some time that the previous
correspondence should be replaced by the
(with denoting the generalized Kaigorodov spacetime) correspondence
with the pp-wave propagating on the BPS brane worldvolume. Interestingly
enough, putting together the two contents, i.e., the introduction of
noncommutativity and at the same time that of the pp-wave along the brane
worldvolume, leads to quite nontrivial consequences such as the emergence of
``time-space'' noncommutativity in addition to the ``space-space''
noncommutativity in the manifold on which the dual gauge theory is defined.
Taking the gravity decoupling limit, it has been realized that for small ,
the solutions all reduce to geometry confirming our
expectation that the IR dynamics of the dual gauge theory should be unaffected
by the noncommutativity while as , the solutions start to deviate
significantly from limit indicating that the UV dynamics of
the dual gauge theory would be heavily distorted by the effect of
noncommutativity.Comment: 21 pages, Latex, One expression changed, a reference added, to appear
in Phys. Rev.
Analyzing capacitance-voltage measurements of vertical wrapped-gated nanowires
The capacitance of arrays of vertical wrapped-gate InAs nanowires are
analyzed. With the help of a Poisson-Schr"odinger solver, information about the
doping density can be obtained directly. Further features in the measured
capacitance-voltage characteristics can be attributed to the presence of
surface states as well as the coexistence of electrons and holes in the wire.
For both scenarios, quantitative estimates are provided. It is furthermore
shown that the difference between the actual capacitance and the geometrical
limit is quite large, and depends strongly on the nanowire material.Comment: 15 pages, 6 Figures included, to appear in Nanotechnolog
Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage
We have previously shown that the insulin like growth factor 1 receptor (IGF1R) translocates to the cell nucleus, where it binds to enhancer like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF1R (nIGF1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer binding factor 1 (Lef1), histone H3, and Brahma related gene 1 proteins. In the present study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF1R binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA coincubated with the IGF1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF1R targets, and PCNA phosphorylation was followed by mono and poly ubiquitination. Coimmunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF1R or mutation of Tyr60, Tyr133, or Tyr250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF1R, externally induced DNA damage in IGF1R negative cells caused G1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF1R in DDT
Effective tuning of the charge state of a single InAs/GaAs quantum dot by an external magnetic field
Impact of cardiac interoception cues and confidence on voluntary decisions to make or withhold action in an intentional inhibition task
Interoceptive signals concerning the internal physiological state of the body influence motivational feelings and action decisions. Cardiovascular arousal may facilitate inhibition to mitigate risks of impulsive actions. Baroreceptor discharge at ventricular systole underpins afferent signalling of cardiovascular arousal. In a modified Go/NoGo task, decisions to make or withhold actions on ‘Choose’ trials were not influenced by cardiac phase, nor individual differences in heart rate variability. However, cardiac interoceptive awareness and insight predicted how frequently participants chose to act, and their speed of action: Participants with better awareness and insight tended to withhold actions and respond slower, while those with poorer awareness and insight tended to execute actions and respond faster. Moreover, self-reported trait urgency correlated negatively with intentional inhibition rates. These findings suggest that lower insight into bodily signals is linked to urges to move the body, putatively by engendering noisier sensory input into motor decision processes eliciting reactive behaviour
Pressure Induced Topological Phase Transitions in Membranes
Some highly unusual features of a lipid-water liquid crystal are revealed by
high pressure x-ray diffraction, light scattering and dilatometric studies of
the lamellar (bilayer ) to nonlamellar inverse hexagonal ()
phase transition. (i) The size of the unit cell of the phase increases
with increasing pressure. (ii) The transition volume, ,
decreases and appears to vanish as the pressure is increased. (iii) The
intensity of scattered light increases as decreases. Data are
presented which suggest that this increase is due to the formation of an
intermediate cubic phase, as predicted by recent theoretical suggestions of the
underlying universal phase sequence.Comment: 12 pages, typed using REVTEX 2.
Sorting live stem cells based on Sox2 mRNA expression.
PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner
- …