116,836 research outputs found

    A Generalized Diagonal Wythoff Nim

    Full text link
    In this paper we study a family of 2-pile Take Away games, that we denote by Generalized Diagonal Wythoff Nim (GDWN). The story begins with 2-pile Nim whose sets of options and PP-positions are {{0,t}tN}\{\{0,t\}\mid t\in \N\} and \{(t,t)\mid t\in \M \} respectively. If we to 2-pile Nim adjoin the main-\emph{diagonal} {(t,t)tN}\{(t,t)\mid t\in \N\} as options, the new game is Wythoff Nim. It is well-known that the PP-positions of this game lie on two 'beams' originating at the origin with slopes Φ=1+52>1\Phi= \frac{1+\sqrt{5}}{2}>1 and 1Φ<1\frac{1}{\Phi} < 1. Hence one may think of this as if, in the process of going from Nim to Wythoff Nim, the set of PP-positions has \emph{split} and landed some distance off the main diagonal. This geometrical observation has motivated us to ask the following intuitive question. Does this splitting of the set of PP-positions continue in some meaningful way if we, to the game of Wythoff Nim, adjoin some new \emph{generalized diagonal} move, that is a move of the form {pt,qt}\{pt, qt\}, where 0<p<q0 < p < q are fixed positive integers and t>0t > 0? Does the answer perhaps depend on the specific values of pp and qq? We state three conjectures of which the weakest form is: limtNbtat\lim_{t\in \N}\frac{b_t}{a_t} exists, and equals Φ\Phi, if and only if (p,q)(p, q) is a certain \emph{non-splitting pair}, and where {{at,bt}}\{\{a_t, b_t\}\} represents the set of PP-positions of the new game. Then we prove this conjecture for the special case (p,q)=(1,2)(p,q) = (1,2) (a \emph{splitting pair}). We prove the other direction whenever q/p<Φq / p < \Phi. In the Appendix, a variety of experimental data is included, aiming to point out some directions for future work on GDWN games.Comment: 38 pages, 34 figure

    The \star-operator and Invariant Subtraction Games

    Full text link
    We study 2-player impartial games, so called \emph{invariant subtraction games}, of the type, given a set of allowed moves the players take turn in moving one single piece on a large Chess board towards the position 0\boldsymbol 0. Here, invariance means that each allowed move is available inside the whole board. Then we define a new game, \star of the old game, by taking the PP-positions, except 0\boldsymbol 0, as moves in the new game. One such game is \W^\star= (Wythoff Nim)^\star, where the moves are defined by complementary Beatty sequences with irrational moduli. Here we give a polynomial time algorithm for infinitely many PP-positions of \W^\star. A repeated application of \star turns out to give especially nice properties for a certain subfamily of the invariant subtraction games, the \emph{permutation games}, which we introduce here. We also introduce the family of \emph{ornament games}, whose PP-positions define complementary Beatty sequences with rational moduli---hence related to A. S. Fraenkel's `variant' Rat- and Mouse games---and give closed forms for the moves of such games. We also prove that (kk-pile Nim)^{\star\star} = kk-pile Nim.Comment: 30 pages, 5 figure
    corecore