1,108 research outputs found
Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward
Hand hygiene is generally considered to be the most important measure that can be applied to prevent the spread of healthcare-associated infection (HAI). Continuous emphasis on this intervention has lead to the widespread opinion that HAI rates can be greatly reduced by increased hand hygiene compliance alone. However, this assumes that the effectiveness of hand hygiene is not constrained by other factors and that improved compliance in excess of a given level, in itself, will result in a commensurate reduction in the incidence of HAI. However, several researchers have found the law of diminishing returns to apply to hand hygiene, with the greatest benefits occurring in the first 20% or so of compliance, and others have demonstrated that poor cohorting of nursing staff profoundly influences the effectiveness of hand hygiene measures. Collectively, these findings raise intriguing questions about the extent to which increasing compliance alone can further reduce rates of HAI.
In order to investigate these issues further, we constructed a deterministic Ross-Macdonald model and applied it to a hypothetical general medical ward. In this model the transmission of staphylococcal infection was assumed to occur after contact with the transiently colonized hands of HCWs, who, in turn, acquire contamination only by touching colonized patients. The aim of the study was to evaluate the impact of imperfect hand cleansing on the transmission of staphylococcal infection and to identify, whether there is a limit, above which further hand hygiene compliance is unlikely to be of benefit.
The model demonstrated that if transmission is solely via the hands of HCWs, it should, under most circumstances, be possible to prevent outbreaks of staphylococcal infection from occurring at a hand cleansing frequencies <50%, even with imperfect hand hygiene. The analysis also indicated that the relationship between hand cleansing efficacy and frequency is not linear - as efficacy decreases, so the hand cleansing frequency required to ensure R0<1 increases disproportionately.
Although our study confirmed hand hygiene to be an effective control measure, it demonstrated that the law of diminishing returns applies, with the greatest benefit derived from the first 20% or so of compliance. Indeed, our analysis suggests that there is little benefit to be accrued from very high levels of hand cleansing and that in most situations compliance >40% should be enough to prevent outbreaks of staphylococcal infection occurring, if transmission is solely via the hands of HCWs. Furthermore we identified a non-linear relationship between hand cleansing efficacy and frequency, suggesting that it is important to maximise the efficacy of the hand cleansing process
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Spectral quantification of nonlinear behaviour of the nearshore seabed and correlations with potential forcings at Duck, N.C., U.S.A
Local bathymetric quasi-periodic patterns of oscillation are identified from
monthly profile surveys taken at two shore-perpendicular transects at the USACE
field research facility in Duck, North Carolina, USA, spanning 24.5 years and
covering the swash and surf zones. The chosen transects are the two furthest
(north and south) from the pier located at the study site. Research at Duck has
traditionally focused on one or more of these transects as the effects of the
pier are least at these locations. The patterns are identified using singular
spectrum analysis (SSA). Possible correlations with potential forcing
mechanisms are discussed by 1) doing an SSA with same parameter settings to
independently identify the quasi-periodic cycles embedded within three
potentially linked sequences: monthly wave heights (MWH), monthly mean water
levels (MWL) and the large scale atmospheric index known as the North Atlantic
Oscillation (NAO) and 2) comparing the patterns within MWH, MWL and NAO to the
local bathymetric patterns. The results agree well with previous patterns
identified using wavelets and confirm the highly nonstationary behaviour of
beach levels at Duck; the discussion of potential correlations with
hydrodynamic and atmospheric phenomena is a new contribution. The study is then
extended to all measured bathymetric profiles, covering an area of 1100m
(alongshore) by 440m (cross-shore), to 1) analyse linear correlations between
the bathymetry and the potential forcings using multivariate empirical
orthogonal functions (MEOF) and linear correlation analysis and 2) identify
which collective quasi-periodic bathymetric patterns are correlated with those
within MWH, MWL or NAO, based on a (nonlinear) multichannel singular spectrum
analysis (MSSA). (...continued in submitted paper)Comment: 50 pages, 3 tables, 8 figure
Impacts of 4D BIM on Construction Project Performance
A significant proportion of construction projects are failing to achieve their deadline finish dates. This advocate for solutions that could address the root causes of time impacting risks, leading to the use of 4D BIM for project planning. This study investigates the impacts of 4D BIM on construction projects. An exploratory sequential mixed method research was conducted to initially explore the topic via interviews and literature review, and, subsequently, the themes derived were put into questionnaires to elicit expert knowledge on a wider industry scale. The data were analysed using thematic analysis, reliability analysis, Kruskal-Wallis test and factor analysis. Across the objectives around the impacts of 4D BIM on project reliability, monitoring and diagnosis, the findings presented eight key ways the 4D BIM support project performance. Examples of component factors that were raised was planning efficiency to enhance planner output, assessment and directive with a better comparison of planned and actual progress, and thorough/comprehensive risk reflection to cover wide ranges of issues. Upon further reflection, the finding highlighted the issues of the lack of shared responsibility outside of the planner and BIM coordinator, severe lack of understanding and training regarding 4D BIM and complexity of carrying out the process effectively
Genetic Diversity and Population Parameters of Sea Otters, Enhydra lutris, before Fur Trade Extirpation from 1741–1911
All existing sea otter, Enhydra lutris, populations have suffered at least one historic population bottleneck stemming from the fur trade extirpations of the eighteenth and nineteenth centuries. We examined genetic variation, gene flow, and population structure at five microsatellite loci in samples from five pre-fur trade populations throughout the sea otter's historical range: California, Oregon, Washington, Alaska, and Russia. We then compared those values to genetic diversity and population structure found within five modern sea otter populations throughout their current range: California, Prince William Sound, Amchitka Island, Southeast Alaska and Washington. We found twice the genetic diversity in the pre-fur trade populations when compared to modern sea otters, a level of diversity that was similar to levels that are found in other mammal populations that have not experienced population bottlenecks. Even with the significant loss in genetic diversity modern sea otters have retained historical structure. There was greater gene flow before extirpation than that found among modern sea otter populations but the difference was not statistically significant. The most dramatic effect of pre fur trade population extirpation was the loss of genetic diversity. For long term conservation of these populations increasing gene flow and the maintenance of remnant genetic diversity should be encouraged
Drying-mediated patterns in colloid-polymer suspensions
Drying-mediated patterning of colloidal particles is a physical phenomenon that must be understood in inkjet printing technology to obtain crack-free uniform colloidal films. Here we experimentally study the drying-mediated patterns of a model colloid-polymer suspension and specifically observe how the deposit pattern appears after droplet evaporation by varying particle size and polymer concentration. We find that at a high polymer concentration, the ring-like pattern appears in suspensions with large colloids, contrary to suppression of ring formation in suspensions with small colloids thanks to colloidpolymer interactions. We attribute this unexpected reversal behavior to hydrodynamics and size dependence of colloid-polymer interactions. This finding would be very useful in developing control of drying-mediated self-assembly to produce crack-free uniform patterns from colloidal fluids.ope
Chromatin States Accurately Classify Cell Differentiation Stages
Gene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells. The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic stem cells. We also found that the “hotspot” genes, whose chromatin states change dynamically in accordance to the differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin domains, and that specialized gene clusters tend to be embedded in stably occupied domains
Rural–Urban Migration and Experience of Childhood Abuse in the Young Thai Population
Evidence suggests that certain migrant populations are at increased risk of abusive behaviors. It is unclear whether this may also apply to Thai rural–urban migrants, who may experience higher levels of psychosocial adversities than the population at large. The study aims to examine the association between migration status and the history of childhood sexual, physical, and emotional abuse among young Thai people in an urban community. A population-based cross-sectional survey was conducted in Northern Bangkok on a representative sample of 1052 young residents, aged 16–25 years. Data were obtained concerning: 1) exposures—migration (defined as an occasion when a young person, born in a more rural area moves for the first time into Greater Bangkok) and age at migration. 2) outcomes—child abuse experiences were assessed with an anonymous self report adapted from the Conflict Tactics Scales (CTS). There were 8.4%. 16.6% and 56.0% reporting sexual, physical, and emotional abuse, respectively. Forty six percent of adolescents had migrated from rural areas to Bangkok, mostly independently at the age of 15 or after to seek work. Although there were trends towards higher prevalences of the three categories of abuse among early migrants, who moved to Bangkok before the age of 15, being early migrants was independently associated with experiences of physical abuse (OR 1.9 95%CI 1.1–3.2) and emotional abuse (OR 2.0, 95%CI 1.3–3.0) only. Our results suggest that rural–urban migration at an early age may place children at higher risk of physical and emotional abuse. This may have policy implications for the prevention of childhood abuse particularly among young people on the move
A seesaw model for intermolecular gating in the kinesin motor protein
Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement
- …