21,265 research outputs found
Validity of adiabaticity in Cavity QED
This paper deals with the concept of adiabaticity for fully quantum
mechanically cavity QED models. The physically interesting cases of Gaussian
and standing wave shapes of the cavity mode are considered. An analytical
approximate measure for adiabaticity is given and compared with numerical wave
packet simulations. Good agreement is obtained where the approximations are
expected to be valid. Usually for cavity QED systems, the large atom-field
detuning case is considered as the adiabatic limit. We, however, show that
adiabaticity is also valid, for the Gaussian mode shape, in the opposite limit.
Effective semiclassical time dependent models, which do not take into account
the shape of the wave packet, are derived. Corrections to such an effective
theory, which are purely quantum mechanical, are discussed. It is shown that
many of the results presented can be applied to time dependent two-level
systems.Comment: 10 pages, 9 figure
Year-class formation in Pacific herring (Clupea pallasi) estimated from spawning-date distributions of juveniles in San Francisco Bay, California
Inter and intra-annual variation in year-class strength was analyzed for San Francisco Bay Pacific herring (Clupea pallasi) by using otoliths of juveniles. Juvenile herring
were collected from March through June in 1999 and 2000 and otoliths from subsamples of these collections were aged by daily otolith increment analysis. The composition of the year classes in 1999 and 2000 were determined by back-calculating the birth date distribution for surviving juvenile herring. In 2000, 729% more juveniles were captured than in 1999, even though an estimated 12% fewer
eggs were spawned in 2000. Spawning-date distributions show that survival for the 2000 year class was exceptionally good for a short (approximately 1 month) period of spawning,
resulting in a large abundance of juvenile recruits. Analysis of age at size shows that growth rate increased
significantly as the spawning season progressed both in 1999 and 2000. However, only in 2000 were the bulk of surviving juveniles a product of the fast growth period. In the two years examined, year-class strength was not predicted by the estimated number of eggs spawned, but rather appeared to depend on survival of eggs or larvae (or both) through the juvenile stage. Fast growth through the larval stage may have little effect on year-class strength if mortality during the egg stage is high and few larvae are available
The "Mysterious" Origin of Brown Dwarfs
Hundreds of brown dwarfs (BDs) have been discovered in the last few years in
stellar clusters and among field stars. BDs are almost as numerous as hydrogen
burning stars and so a theory of star formation should also explain their
origin. The ``mystery'' of the origin of BDs is that their mass is two orders
of magnitude smaller than the average Jeans' mass in star--forming clouds, and
yet they are so common. In this work we investigate the possibility that
gravitationally unstable protostellar cores of BD mass are formed directly by
the process of turbulent fragmentation. Supersonic turbulence in molecular
clouds generates a complex density field with a very large density contrast. As
a result, a fraction of BD mass cores formed by the turbulent flow are dense
enough to be gravitationally unstable. We find that with density, temperature
and rms Mach number typical of cluster--forming regions, turbulent
fragmentation can account for the observed BD abundance.Comment: 11 pages, 3 figures, ApJ submitted Error in equation 1 has been
corrected. Improved figure
Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel
The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity
Confocal unstable-resonator semiconductor laser
GaAs/GaAlAs heterostructure lasers with a monolithic confocal unstable resonator were demonstrated. The curved mirrors satisfying the confocal condition were fabricated by etching. Close to threshold, the lasers operate in a single lateral mode with a nearly collimated output beam. A single-lobe far-field intensity distribution as narrow as 1.90 full width at half maximum was measured
Hands-on Gravitational Wave Astronomy: Extracting astrophysical information from simulated signals
In this paper we introduce a hands-on activity in which introductory
astronomy students act as gravitational wave astronomers by extracting
information from simulated gravitational wave signals. The process mimics the
way true gravitational wave analysis will be handled by using plots of a pure
gravitational wave signal. The students directly measure the properties of the
simulated signal, and use these measurements to evaluate standard formulae for
astrophysical source parameters. An exercise based on the discussion in this
paper has been written and made publicly available online for use in
introductory laboratory courses.Comment: 5 pages, 4 figures; submitted to Am. J. Phy
SPAR VI Technical Report for Experiment 76-22: Directional Solidification of Magnetic Composites
Samples of eutectic Bi/MnBi were directionally solidified during a low-g interval aboard the SPAR 6 flight and in a l-g environment under identical furnace velocity and thermal conditions. The Bi/MnBi eutectic is characterized by a regular rod eutectic whose morphology may be sensitive to thermo-solutal convection and by its components, MnBi, which is ferromagnetic. Morphological analyses on samples show statistically smaller interrod spacings and rod diameters with respect to samples grown under identical solidification furnace conditions in l-g. An adjustment between the interrod spacing, growth velocity, and total undercooling at the solidification interface is proposed. Morphological analyses on samples grown in l-g indicate little difference between results for different growth orientations with respect to the gravity vector. The magnetic properties are significantly affected, however, by the presence of a nonequilibrium magnetic phase and the nonequilibrium phase transforms to the equilibrium ferromagnetic phase during isothermal heat treatment
Flows, Fragmentation, and Star Formation. I. Low-mass Stars in Taurus
The remarkably filamentary spatial distribution of young stars in the Taurus
molecular cloud has significant implications for understanding low-mass star
formation in relatively quiescent conditions. The large scale and regular
spacing of the filaments suggests that small-scale turbulence is of limited
importance, which could be consistent with driving on large scales by flows
which produced the cloud. The small spatial dispersion of stars from gaseous
filaments indicates that the low-mass stars are generally born with small
velocity dispersions relative to their natal gas, of order the sound speed or
less. The spatial distribution of the stars exhibits a mean separation of about
0.25 pc, comparable to the estimated Jeans length in the densest gaseous
filaments, and is consistent with roughly uniform density along the filaments.
The efficiency of star formation in filaments is much higher than elsewhere,
with an associated higher frequency of protostars and accreting T Tauri stars.
The protostellar cores generally are aligned with the filaments, suggesting
that they are produced by gravitational fragmentation, resulting in initially
quasi-prolate cores. Given the absence of massive stars which could strongly
dominate cloud dynamics, Taurus provides important tests of theories of
dispersed low-mass star formation and numerical simulations of molecular cloud
structure and evolution.Comment: 32 pages, 9 figures: to appear in Ap
Dynamical model for the formation of patterned deposits at receding contact lines
We describe the formation of deposition patterns that are observed in many
different experiments where a three-phase contact line of a volatile
nanoparticle suspension or polymer solution recedes. A dynamical model based on
a long-wave approximation predicts the deposition of irregular and regular line
patterns due to self-organised pinning-depinning cycles corresponding to a
stick-slip motion of the contact line. We analyze how the line pattern
properties depend on the evaporation rate and solute concentration
The growth of metastable peritectic compounds
The influence of gravitationally driven thermosolutal convection on the directional solidification of peritectic alloys is considered as well as the relationships between the solidification processing conditions, and the microstructure, chemistry, and magnetic properties of such alloys. Analysis of directionally solidified Pb-Bi peritectic samples indicates that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. A peritectic solidification model which accounts for partial mixing in the liquid ahead of the planar solidification interface and describes macrosegregation has been developed. Two-phase dendritic and banded microstructures were grown in the Pb-Bi peritectic system, refined two-phase microstructures have were observed, and candidate formation mechanisms proposed. Material handling, containment, casting, microstructural and magnetic characterization techniques were developed for the Sm-Co system. Alloys produced with these procedures are homogeneous
- …