13,125 research outputs found
Thermal Instability and the Formation of Clumpy Gas Clouds
The radiative cooling of optically thin gaseous regions and the formation of
a two-phase medium and of cold gas clouds with a clumpy substructure is
investigated. In optically thin clouds, the growth rate of small isobaric
density perturbations is independent of their length scale. However, the growth
of a perturbation is limited by its transition from isobaric to isochoric
cooling. The temperature at which this transition occurs decreases with the
length scale of the perturbation. Consequently small scale perturbations have
the potential to reach higher amplitudes than large scale perturbations. When
the amplitude becomes nonlinear, advection overtakes the pressure gradient in
promoting the compression resulting in an accelerated growth of the
disturbance. The critical temperature for transition depends on the initial
amplitude. The fluctuations which can first reach nonlinearity before their
isobaric to isochoric transition will determine the characteristic size and
mass of the cold dense clumps which would emerge from the cooling of an
initially nearly homogeneous region of gas. Thermal conduction is in general
very efficient in erasing isobaric, small-scale fluctuations, suppressing a
cooling instability. A weak, tangled magnetic field can however reduce the
conductive heat flux enough for low-amplitude fluctuations to grow isobarically
and become non-linear if their length scales are of order 0.01 pc. Finally, we
demonstrate how a 2-phase medium, with cold clumps being pressure confined in a
diffuse hot residual background component, would be sustained if there is
adequate heating to compensate the energy loss.Comment: 26 pages, Latex, 10 postscript figures, ApJ, in pres
Defect-Mediated Emulsification in Two Dimensions
We consider two dimensional dispersions of droplets of isotropic phase in a
liquid with an XY-like order parameter, tilt, nematic, and hexatic symmetries
being included. Strong anchoring boundary conditions are assumed. Textures for
a single droplet and a pair of droplets are calculated and a universal
droplet-droplet pair potential is obtained. The interaction of dispersed
droplets via the ordered phase is attractive at large distances and repulsive
at short distances, which results in a well defined preferred separation for
two droplets and topological stabilization of the emulsion. This interaction
also drives self-assembly into chains. Preferred separations and energy
barriers to coalescence are calculated, and effects of thermal fluctuations and
film thickness are discussed.Comment: revtex4, 13 pages, 12 figure
Shear thickening of cornstarch suspensions as a re-entrant jamming transition
We study the rheology of cornstarch suspensions, a dense system of
non-Brownian particles that exhibits shear thickening, i.e. a viscosity that
increases with increasing shear rate. Using MRI velocimetry we show that the
suspension has a yield stress. From classical rheology it follows that as a
function of the applied stress the suspension is first solid (yield stress),
then liquid and then solid again when it shear thickens. The onset shear rate
for thickening is found to depend on the measurement geometry: the smaller the
gap of the shear cell, the lower the shear rate at which thickening occurs.
Shear thickening can then be interpreted as the consequence of the Reynolds
dilatancy: the system under flow wants to dilate but instead undergoes a
jamming transition because it is confined, as confirmed by measurement of the
dilation of the suspension as a function of the shear rate
Turbulent Cooling Flows in Molecular Clouds
We propose that inward, subsonic flows arise from the local dissipation of
turbulent motions in molecular clouds. Such "turbulent cooling flows" may
account for recent observations of spatially extended inward motions towards
dense cores. These pressure-driven flows may arise from various types of
turbulence and dissipation mechanisms. For the example of MHD waves and
turbulence damped by ion-neutral friction, sustained cooling flow requires that
the outer gas be sufficiently turbulent, that the inner gas have marginal
field-neutral coupling, and that this coupling decrease sufficiently rapidly
with increasing density. These conditions are most likely met at the transition
between outer regions ionized primarily by UV photons and inner regions ionized
primarily by cosmic rays. If so, turbulent cooling flows can help form dense
cores, with speeds faster than expected for ambipolar diffusion. Such motions
could reduce the time needed for dense core formation and could precede and
enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip
Economic Analysis of the Effects of Winter Cover Crops on No-Tillage Corn Yield Response to Fertilizer Nitrogen
Crop Production/Industries,
Crack cocaine induced upper airway injury.
The paper describes the presentation and management of patients presenting with crack cocaine induced upper airway injury. The study involved a retrospective clinical series of six patients with crack cocaine induced upper airway injury. Demographics, symptoms, physical exam, flexible laryngoscopy findings, treatment and intervention were recorded. All patients with crack cocaine induced thermal injury presented with mouth or throat pain plus at least one other laryngeal symptom, such as globus sensation, dysphagia or throat tightness. On physical exam, the supraglottis was the most common subsite of endolaryngeal injury. The only statistically significant finding was the number of subsites on initial physical exam and flexible laryngoscopy and need for airway intervention (p = 0.001). Airway intervention was required in one patient, while the remaining patients were closely observed until resolution of symptoms. Upper airway injury should be suspected in patients who present with pain and laryngeal symptoms after smoking crack cocaine
The mass-metallicity gradient relation of early-type galaxies
We present a newly observed relation between galaxy mass and radial
metallicity gradients of early-type galaxies. Our sample of 51 early-type
galaxies encompasses a comprehensive mass range from dwarf to brightest cluster
galaxies. The metallicity gradients are measured out to one effective radius by
comparing nearly all of the Lick absorption-line indices to recent models of
single stellar populations. The relation shows very different behaviour at low
and high masses, with a sharp transition being seen at a mass of ~ 3.5 x 10^10
M_sun (velocity dispersion of ~140 km/s, M_B ~ -19). Low-mass galaxies form a
tight relation with mass, such that metallicity gradients become shallower with
decreasing mass and positive at the very low-mass end. Above the mass
transition point several massive galaxies have steeper gradients, but a clear
downturn is visible marked by a broad scatter. The results are interpreted in
comparison with competing model predictions. We find that an early star-forming
collapse could have acted as the main mechanism for the formation of low-mass
galaxies, with star formation efficiency increasing with galactic mass. The
high-mass downturn could be a consequence of merging and the observed larger
scatter a natural result of different merger properties. These results suggest
that galaxies above the mass threshold of ~ 3.5 x 10^10 M_sun might have formed
initially by mergers of gas-rich disc galaxies and then subsequently evolved
via dry merger events. The varying efficiency of the dissipative merger-induced
starburst and feedback processes have shaped the radial metallicity gradients
in these high-mass systems.Comment: 5 pageg, 3 figures, accepted by ApJ Lette
Modeling a high mass turn down in the stellar initial mass function
Statistical sampling from the stellar initial mass function (IMF) for all
star-forming regions in the Galaxy would lead to the prediction of ~1000 Msun
stars unless there is a rapid turn-down in the IMF beyond several hundred solar
masses. Such a turndown is not necessary for dense clusters because the number
of stars sampled is always too small. Here we explore several mechanisms for an
upper mass cutoff, including an exponential decline of the star formation
probability after a turbulent crossing time. The results are in good agreement
with the observed IMF over the entire stellar mass range, and they give a
gradual turn down compared to the Salpeter function above ~100 Msun for normal
thermal Jeans mass, M_J. The upper mass turn down should scale with M_J in
different environments. A problem with the models is that they cannot give both
the observed power-law IMF out to the high-mass sampling limit in dense
clusters, as well as the observed lack of supermassive stars in whole galaxy
disks. Either there is a sharper upper-mass cutoff in the IMF, perhaps from
self-limitation, or the IMF is different for dense clusters than for the
majority of star formation that occurs at lower density. Dense clusters seem to
have an overabundance of massive stars relative to the average IMF in a galaxy.Comment: 19 pages, 2 figures, Astrophysical Journal, Vol 539, August 10, 200
Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach
The relativistic optical model potential (OMP) for nucleon-nucleus scattering
is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF)
approach using the Bonn-B One-Boson- Exchange potential for the bare
nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent
nucleon self-energies in nuclear medium are derived from the DBHF approach
based on the projection techniques within the subtracted T -matrix
representation. The Dirac potentials as well as the corresponding Schrodinger
equivalent potentials are evaluated. An improved local density approximation is
employed in this analysis, where a range parameter is included to account for a
finite-range correction of the nucleon-nucleon interaction. As an example the
total cross sections, differential elastic scattering cross sections, analyzing
powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated.
The results derived from this microscopic approach of the OMP are compared to
the experimental data, as well as the results obtained with a phenomenological
OMP. A good agreement between the theoretical results and the measurements can
be achieved for all incident energies using a constant value for the range
parameter.Comment: 10 pages, 16 figure
The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus
By combining deep optical imaging and infrared spectroscopy with data from
the Two-Micron All-Sky Survey (2MASS) and from previous studies (e.g., Briceno
et al.), I have measured the Initial Mass Function (IMF) for a
reddening-limited sample in four fields in the Taurus star forming region. This
IMF is representative of the young populations within these fields for masses
above 0.02 Msun. Relative to the similarly derived IMF for the Trapezium
Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars
above one solar mass (i.e., steeper slope), the same turnover mass (~0.8 Msun),
and a significant deficit of brown dwarfs. If the IMF in Taurus were the same
as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msun) are expected in
these Taurus fields where only one brown dwarf candidate is found. These
results are used to test theories of the IMF.Comment: to be published in The Astrophysical Journal, 24 pages, 6 figures,
also found at http://cfa-www.harvard.edu/~kluhman/taurus
- …