792 research outputs found
Recommended from our members
Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces
Electrochemical interfaces are central to the function and performance of energy storage devices. Thus, the development of new methods to characterize these interfaces, in conjunction with electrochemical performance, is essential for bridging the existing knowledge gaps and accelerating the development of energy storage technologies. Of particular need is the ability to characterize surfaces or interfaces in a non-destructive way with adequate resolution to discern individual structural and chemical building blocks. To this end, sub-diffraction-limit low-energy infrared optical probes that exploit near-field interactions within atomic force microscopy platforms, such as pseudoheterodyne nanoimaging, photothermal nanoimaging and nanospectroscopy, and nanoscale Fourier transform infrared spectroscopy, are all powerful emerging techniques. These are capable of non-destructive surface probing and imaging at nanometer resolution. This review outlines recent efforts to characterize ex situ,in situ,andoperando electrode materials and electrochemical interfaces in rechargeable batteries with these advanced infrared near-field probes
Pascalammetry with operando microbattery probes: Sensing high stress in solid-state batteries.
Energy storage science calls for techniques to elucidate ion transport over a range of conditions and scales. We introduce a new technique, pascalammetry, in which stress is applied to a solid-state electrochemical device and induced faradaic current transients are measured and analyzed. Stress-step pascalammetry measurements are performed on operando microbattery probes (Li2O/Li/W) and Si cathodes, revealing stress-assisted Li+ diffusion. We show how non-Cottrellian lithium diffusional kinetics indicates stress, a prelude to battery degradation. An analytical solution to a diffusion/activation equation describes this stress signature, with spatiotemporal characteristics distinct from Cottrell's classic solution for unstressed systems. These findings create an unprecedented opportunity for quantitative detection of stress in solid-state batteries through the current signature. Generally, pascalammetry offers a powerful new approach to study stress-related phenomena in any solid-state electrochemical system
On the Evolution of the Dense Core Mass Function
The mass distributions of dense cores in star-forming regions are measured to
have a shape similar to the initial mass function of stars. This has been
generally interpreted to mean that the constituent cores will form individual
stars or stellar systems at a nearly constant star formation efficiency. This
article presents a series of numerical experiments evolving distributions of
dense cores into stars to quantify the effects of stellar multiplicity, global
core fragmentation, and a varying star formation efficiency. We find that the
different evolutionary schemes have an overall small effect on the shape of the
resultant distribution of stars. Our results imply that at the current level of
observational accuracy the comparison between the mass functions of dense cores
and stars alone is insufficient to discern between different evolutionary
models. Observations over a wide range of mass scales including the high or
low-mass tails of these distributions have the largest potential for discerning
between different core evolutionary schemes.Comment: 6 pages, 3 figures, ApJ accepte
The Formation of the First Stars II. Radiative Feedback Processes and Implications for the Initial Mass Function
We consider the radiative feedback processes that operate during the
formation of the first stars, including the photodissociation of H_2, Ly-alpha
radiation pressure, formation and expansion of an HII region, and disk
photoevaporation. These processes may inhibit continued accretion once the
stellar mass has reached a critical value, and we evaluate this mass separately
for each process. Photodissociation of H_2 in the local dark matter minihalo
occurs relatively early in the growth of the protostar, but we argue this does
not affect subsequent accretion since by this time the depth of the potential
is large enough for accretion to be mediated by atomic cooling. However,
neighboring starless minihalos can be affected. Ionization creates an HII
region in the infalling envelope above and below the accretion disk. Ly-alpha
radiation pressure acting at the boundary of the HII region is effective at
reversing infall from narrow polar directions when the star reaches ~20-30Msun,
but cannot prevent infall from other directions. Expansion of the HII region
beyond the gravitational escape radius for ionized gas occurs at masses
~50-100Msun, depending on the accretion rate and angular momentum of the
inflow. However, again, accretion from the equatorial regions can continue
since the neutral accretion disk has a finite thickness and shields a
substantial fraction of the accretion envelope from direct ionizing flux. At
higher stellar masses, ~140Msun in the fiducial case, the combination of
declining accretion rates and increasing photoevaporation-driven mass loss from
the disk act to effectively halt the increase in the protostellar mass. We
identify this process as the mechanism that terminates the growth of Population
III stars... (abridged)Comment: 31 pages, including 10 figures, accepted to Ap
Overrating Bruins, Underrating Badgers: Media, Bias, and College Basketball
Why are some teams perennial darlings of sports journalists while other talented squads get overlooked? Each week during the NCAA basketball season, the Associated Press releases a ranked poll of the top 25 teams. By comparing the preseason and postseason rankings, we construct a measure of how much sports journalists who respond to the poll overrate (or underrate) college teams relative to their actual performance. Using this metric for the 115 NCAA schools that have appeared at least once in the opening or final AP poll in the last 25 years, we examine a range of institutional characteristics that may predict overrating or underrating by members of the sports media. A multilevel analysis reveals that recent performance in the NCAA tournament and the perceived quality of the most recent recruiting class are the strongest predictors of being consistently overrated. While no institutional characteristics had direct effects, the effect of tournament performance on overrating is greater for teams that have historically had fewer coaches and compete in a “power” conference, and for national research institutions with larger student bodies. Our findings have implications for understanding how complex decisions are made within a conservative social institution (the media) and suggest that some schools may receive advantages in media exposure and financial opportunity
Semi-relativistic approximation to gravitational radiation from encounters with nonspinning black holes
The capture of compact bodies by black holes in galactic nuclei is an
important prospective source for low frequency gravitational wave detectors,
such as the planned Laser Interferometer Space Antenna. This paper calculates,
using a semirelativistic approximation, the total energy and angular momentum
lost to gravitational radiation by compact bodies on very high eccentricity
orbits passing close to a supermassive, nonspinning black hole; these
quantities determine the characteristics of the orbital evolution necessary to
estimate the capture rate. The semirelativistic approximation improves upon
treatments which use orbits at Newtonian-order and quadrupolar radiation
emission, and matches well onto accurate Teukolsky simulations for low
eccentricity orbits. Formulae are presented for the semirelativistic energy and
angular momentum fluxes as a function of general orbital parameters.Comment: 27 pages, 12 figures; v2: revised manuscript includes small changes
to make paper consistent with published version; v3: a statement about how to
generalise our results to hyperbolic orbits was incorrect, new version
includes published erratum as an appendi
Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context
Genomic organization and evolution of the ULBP genes in cattle
BACKGROUND: The cattle UL16-binding protein 1 (ULBP1) and ULBP2 genes encode members of the MHC Class I superfamily that have homology to the human ULBP genes. Human ULBP1 and ULBP2 interact with the NKG2D receptor to activate effector cells in the immune system. The human cytomegalovirus UL16 protein is known to disrupt the ULBP-NKG2D interaction, thereby subverting natural killer cell-mediated responses. Previous Southern blotting experiments identified evidence of increased ULBP copy number within the genomes of ruminant artiodactyls. On the basis of these observations we hypothesized that the cattle ULBPs evolved by duplication and sequence divergence to produce a sufficient number and diversity of ULBP molecules to deliver an immune activation signal in the presence of immunogenic peptides. Given the importance of the ULBPs in antiviral immunity in other species, our goal was to determine the copy number and genomic organization of the ULBP genes in the cattle genome. RESULTS: Sequencing of cattle bacterial artificial chromosome genomic inserts resulted in the identification of 30 cattle ULBP loci existing in two gene clusters. Evidence of extensive segmental duplication and approximately 14 Kbp of novel repetitive sequences were identified within the major cluster. Ten ULBPs are predicted to be expressed at the cell surface. Substitution analysis revealed 11 outwardly directed residues in the predicted extracellular domains that show evidence of positive Darwinian selection. These positively selected residues have only one residue that overlaps with those proposed to interact with NKG2D, thus suggesting the interaction with molecules other than NKG2D. CONCLUSION: The ULBP loci in the cattle genome apparently arose by gene duplication and subsequent sequence divergence. Substitution analysis of the ULBP proteins provided convincing evidence for positive selection on extracellular residues that may interact with peptide ligands. These results support our hypothesis that the cattle ULBPs evolved under adaptive diversifying selection to avoid interaction with a UL16-like molecule whilst preserving the NKG2D binding site. The large number of ULBPs in cattle, their extensive diversification, and the high prevalence of bovine herpesvirus infections make this gene family a compelling target for studies of antiviral immunity
Expansion of W 3(OH)
A direct measurement of the expansion of W 3(OH) is made by comparing Very
Large Array images taken about 10 yr apart. The expansion is anisotropic with a
typical speed of 3 to 5 km/s, indicating a dynamical age of only 2300 yr. These
observations are inconsistent with either the freely expanding shell model or a
simple bow shock model. The most favored model is a slowly expanding shell-like
HII region, with either a fast rarefied flow or another less massive diffuse
ionized region moving towards the observer. There is also a rapidly evolving
source near the projected center of emission, perhaps related to the central
star.Comment: LaTeX file, 28 pages, includes 8 figures. To appear in ApJ in
December 10 (1998) issue. Also available at
http://www.submm.caltech.edu/~kawamura/w3oh_pp.p
- …