14,156 research outputs found
Supercell studies of the Fermi surface changes in the electron-doped superconductor LaFeAsOF
We study the changes in the Fermi surface with electron doping in the
LaFeAsOF superconductors with density-functional supercell
calculations using the linearized augmented planewave (LAPW) method. The
supercell calculations with explicit F substitution are compared with those
obtained from the virtual crystal approximation (VCA) and from a simple rigid
band shift. We find significant differences between the supercell results and
those obtained from the rigid-band shift with electron doping, although quite
remarkably the supercell results are in good agreement with the virtual crystal
approximation (VCA) where the nuclear charges of the O atoms are slightly
increased to mimic the addition of the extra electrons. With electron doping,
the two cylindrical hole pockets along shrink in size, and the third
hole pocket around disappears for an electron doping concentration in
excess of about 7-8%, while the two elliptical electron cylinders along
expand in size. The spin-orbit coupling does not affect the Fermi surface much
except to somewhat reduce the size of the third hole pocket in the undoped
case. We find that with the addition of the electrons the antiferromagnetic
state becomes energetically less stable as compared to the nonmagnetic state,
indicating that the electron doping may provide an extra degree of stability to
the formation of the superconducting ground state.Comment: 7 pages, 8 figure
Water vapor in Jupiter's atmosphere
High spectral resolution observations of Jupiter at 2.7 and 5 microns acquired from the Kuiper Airborne Observatory were used to infer the vertical distribution of H2O between 0.7 and 6 bars. The H2O mole fraction, qH2O, is saturated for P<2 bars, qH2O = 4x.000001 in the 2 to 4 bar range and it increases to 3x.00001 at 6 bars where T = 288 K. The base of the 5 micron line formation region is determined by pressure-induced H2 opacity. At this deepest accessible level, the O/H ratio in Jupiter is depleted by a factor of 50 with respect to the solar atmosphere. High spatial resolution Voyager IRIS spectra of Jupiter's North Tropical Zone, Equatorial Zone, and Hot Spots in the North and South Equatorial Belt were analyzed to determine the spatial variation of H2O across the planet. The column abundance of H2O above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amgt. A cloud model for Jupiter's belts and zones was developed in order to fit the IRIS 5 micron spectra. An absorbing cloud located at 2 bars whose 5 micron optical thickness varies between 1 in the Hot Spots and 4 in the coldest zones satisfactorily matches the IRIS data
Stability of parallel/perpendicular domain boundaries in lamellar block copolymers under oscillatory shear
We introduce a model constitutive law for the dissipative stress tensor of
lamellar phases to account for low frequency and long wavelength flows. Given
the uniaxial symmetry of these phases, we argue that the stress tensor must be
the same as that of a nematic but with the local order parameter being the
slowly varying lamellar wavevector. This assumption leads to a dependence of
the effective dynamic viscosity on orientation of the lamellar phase. We then
consider a model configuration comprising a domain boundary separating
laterally unbounded domains of so called parallel and perpendicularly oriented
lamellae in a uniform, oscillatory, shear flow, and show that the configuration
can be hydrodynamically unstable for the constitutive law chosen. It is argued
that this instability and the secondary flows it creates can be used to infer a
possible mechanism for orientation selection in shear experiments.Comment: 26 pages, 10 figure
Orientation selection in lamellar phases by oscillatory shears
In order to address the selection mechanism that is responsible for the
unique lamellar orientation observed in block copolymers under oscillatory
shears, we use a constitutive law for the dissipative part of the stress tensor
that respects the uniaxial symmetry of a lamellar phase. An interface
separating two domains oriented parallel and perpendicular to the shear is
shown to be hydrodynamically unstable, a situation analogous to the thin layer
instability of stratified fluids under shear. The resulting secondary flows
break the degeneracy between parallel and perpendicular lamellar orientation,
leading to a preferred perpendicular orientation in certain ranges of
parameters of the polymer and of the shear.Comment: 4 pages, 3 figure
Jamming, two-fluid behaviour and 'self-filtration' in concentrated particulate suspensions
We study the flow of model experimental hard sphere colloidal suspensions at
high volume fraction driven through a constriction by a pressure
gradient. Above a particle-size dependent limit , direct microscopic
observations demonstrate jamming and unjamming--conversion of fluid to solid
and vice versa--during flow. We show that such a jamming flow produces a
reduction in colloid concentration downstream of the constriction.
We propose that this `self-filtration' effect is the consequence of a
combination of jamming of the particulate part of the system and continuing
flow of the liquid part, i.e. the solvent, through the pores of the jammed
solid. Thus we link the concept of jamming in colloidal and granular media with
a 'two-fluid'-like picture of the flow of concentrated suspensions. Results are
also discussed in the light of Osborne Reynolds' original experiments on
dilation in granular materials.Comment: 4 pages, 3 figure
Red cell antibody problems in 1000 liver transplants
Liver transplant patients frequently require large amounts of blood. The frequency and nature of their red cell (RBC) antibody problems were examined. Records were reviewed in 496 adults and 286 children undergoing 1000 consecutive transplants. Twenty‐two percent of adults and 14 percent of children had RBC alloantibodies. Antibodies of potential clinical significance were found before transplant in 6.3 percent of adults and 1.0 percent of children; despite immunosuppression, they appeared 1 to 5 weeks after transplant in an additional 7.5 and 5.2 percent respectively. These antibodies probably represented secondary immune responses. Of 58 transplant patients with prior potentially significant antibodies, 8 required 7 to 110 units of antigen‐untyped blood after 8 to 28 units of antigen‐negative blood; of these patients, one had subsequent hemolysis. Positive direct antiglobulin tests in 24 percent of adults and 10 percent of children were most often thought to be due to nonspecific adsorption of IgG. Anti‐recipient ABO antibodies developed in 22 of 60 (37%) evaluable ABO‐unmatched grafts; 13 cases had associated hemolysis. In all, 36 percent of adults and 20 percent of children had diverse RBC antibody problems. Resolution of these problems is an important part of the laboratory support necessary for a liver transplantation program. 1989 AAB
Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft
The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed
Unified study of glass and jamming rheology in soft particle systems
We explore numerically the shear rheology of soft repulsive particles at
large volume fraction. The interplay between viscous dissipation and thermal
motion results in multiple rheological regimes encompassing Newtonian,
shear-thinning and yield stress regimes near the `colloidal' glass transition
when thermal fluctuations are important, crossing over to qualitatively similar
regimes near the `jamming' transition when dissipation dominates. In the
crossover regime, glass and jamming sectors coexist and give complex flow
curves. Although glass and jamming limits are characterized by similar
macroscopic flow curves, we show that they occur over distinct time and stress
scales and correspond to distinct microscopic dynamics. We propose a simple
rheological model describing the glass to jamming crossover in the flow curves,
and discuss the experimental implications of our results.Comment: 5 pages, 3 figs; v2 accepted to publication to Phys. Rev. Let
- …