21,527 research outputs found

    Potential formation sites of super star clusters in ultra-luminous infrared galaxies

    Get PDF
    Recent observational results on high spatial resolution images of ultra-luminous infrared galaxies (ULIGs) have revealed very luminous, young, compact, and heavily obscured super star clusters in their central regions, suggested to be formed by gas-rich major mergers. By using stellar and gaseous numerical simulations of galaxy mergers, we firstly demonstrate that the central regions of ULIGs are the most promising formation sites of super star clusters owing to the rather high gaseous pressure of the interstellar medium. Based on simple analytical arguments, we secondly discuss the possibility that super star clusters in an ULIG can be efficiently transferred into the nuclear region owing to dynamical friction and consequently merge with one another to form a single compact stellar nucleus with a seed massive black hole. We thus suggest that multiple merging between super star clusters formed by nuclear starbursts in the central regions of ULIGs can result in the formation of massive black holes.Comment: 12 pages 4 figures, 2001, accepted by ApJ

    Monitoring of the prompt radio emission from the unusual supernova 2004dj in NGC2403

    Full text link
    Supernova 2004dj in the nearby spiral galaxy NGC2403 was detected optically in July 2004. Peaking at a magnitude of 11.2, this is the brightest supernova detected for several years. Here we present Multi-Element Radio Linked Interferometer Network (MERLIN) observations of this source, made over a four month period, which give a position of R.A. = 07h37m17.044s, Dec =+65deg35'57.84" (J2000.0). We also present a well-sampled 5 GHz light curve covering the period from 5 August to 2 December 2004. With the exception of the unusual and very close SN 1987A, these observations represent the first detailed radio light curve for the prompt emission from a Type II-P supernova.Comment: (1) Jodrell Bank Observatory (2) University of Valencia (3) University of Sheffield 6 pages, 1 figure. To appear in ApJ letter

    Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction

    Full text link
    Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson junctions, a key parameter for their use as a qubit. Anharmonicity is found to be reduced by roughly a factor of two compared to conventional metallic junctions, and dependent on gate voltage. Experimental results are consistent with a theoretical model, indicating that Josephson coupling is mediated by a small number of highly transmitting modes in the semiconductor junction

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    A Semiconductor Nanowire-Based Superconducting Qubit

    Full text link
    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information

    Conformal Symmetry for General Black Holes

    Full text link
    We show that the warp factor of a generic asymptotically flat black hole in five dimensions can be adjusted such that a conformal symmetry emerges. The construction preserves all near horizon properties of the black holes, such as the thermodynamic potentials and the entropy. We interpret the geometry with modified asymptotic behavior as the "bare" black hole, with the ambient flat space removed. Our warp factor subtraction generalizes hidden conformal symmetry and applies whether or not rotation is significant. We also find a relation to standard AdS/CFT correspondence by embedding the black holes in six dimensions. The asymptotic conformal symmetry guarantees a dual CFT description of the general rotating black holes.Comment: 26 page

    Heterotic Flux Attractors

    Full text link
    We find attractor equations describing moduli stabilization for heterotic compactifications with generic SU(3)-structure. Complex structure and K\"ahler moduli are treated on equal footing by using SU(3)xSU(3)-structure at intermediate steps. All independent vacuum data, including VEVs of the stabilized moduli, is encoded in a pair of generating functions that depend on fluxes alone. We work out an explicit example that illustrates our methods.Comment: 37 pages, references and clarifications adde
    • …
    corecore