159 research outputs found
Evaluating k-nearest neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in Northeast China
Quantifying spatially explicit or pixel-level aboveground forest biomass (AFB) across large regions is critical for measuring forest carbon sequestration capacity, assessing forest carbon balance, and revealing changes in the structure and function of forest ecosystems. When AFB is measured at the species level using widely available remote sensing data, regional changes in forest composition can readily be monitored. In this study, wall-to-wall maps of species-level AFB were generated for forests in Northeast China by integrating forest inventory data with Moderate Resolution Imaging Spectroradiometer (MODIS) images and environmental variables through applying the optimal k-nearest neighbor (kNN) imputation model. By comparing the prediction accuracy of 630 kNN models, we found that the models with random forest (RF) as the distance metric showed the highest accuracy. Compared to the use of single-month MODIS data for September, there was no appreciable improvement for the estimation accuracy of species-level AFB by using multi-month MODIS data. When k > 7, the accuracy improvement of the RF-based kNN models using the single MODIS predictors for September was essentially negligible. Therefore, the kNN model using the RF distance metric, single-month (September) MODIS predictors and k = 7 was the optimal model to impute the species-level AFB for entire Northeast China. Our imputation results showed that average AFB of all species over Northeast China was 101.98 Mg/ha around 2000. Among 17 widespread species, larch was most dominant, with the largest AFB (20.88 Mg/ha), followed by white birch (13.84 Mg/ha). Amur corktree and willow had low AFB (0.91 and 0.96 Mg/ha, respectively). Environmental variables (e.g., climate and topography) had strong relationships with species-level AFB. By integrating forest inventory data and remote sensing data with complete spatial coverage using the optimal kNN model, we successfully mapped the AFB distribution of the 17 tree species over Northeast China. We also evaluated the accuracy of AFB at different spatial scales. The AFB estimation accuracy significantly improved from stand level up to the ecotype level, indicating that the AFB maps generated from this study are more suitable to apply to forest ecosystem models (e.g., LINKAGES) which require species-level attributes at the ecotype scale
All Vacuum Near-Horizon Geometries in -dimensions with Commuting Rotational Symmetries
We explicitly construct all stationary, non-static, extremal near horizon
geometries in dimensions that satisfy the vacuum Einstein equations, and
that have commuting rotational symmetries. Our work generalizes
[arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been
given in . But our method is different from theirs and relies on a
matrix formulation of the Einstein equations. Unlike their method, this matrix
formulation works for any dimension. The metrics that we find come in three
families, with horizon topology , or ,
or quotients thereof. Our metrics depend on two discrete parameters specifying
the topology type, as well as continuous parameters. Not all of
our metrics in seem to arise as the near horizon limits of known
black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added,
discussion of the parameters specifying solutions corrected, amended to match
published versio
SD-brane gravity fields and rolling tachyons
S(pacelike)D-branes are objects arising naturally in string theory when
Dirichlet boundary conditions are imposed on the time direction. SD-brane
physics is inherently time-dependent. Previous investigations of gravity fields
of SD-branes have yielded undesirable naked spacelike singularities. We set up
the problem of coupling the most relevant open-string tachyonic mode to
massless closed-string modes in the bulk, with backreaction and Ramond-Ramond
fields included. We find solutions numerically in a self-consistent
approximation; our solutions are naturally asymptotically flat and
time-reversal asymmetric. We find completely nonsingular evolution; in
particular, the dilaton and curvature are well-behaved for all time. The
essential mechanism for spacetime singularity resolution is the inclusion of
full backreaction between the bulk fields and the rolling tachyon. Our analysis
is not the final word on the story, because we have to make some significant
approximations, most notably homogeneity of the tachyon on the unstable branes.
Nonetheless, we provide significant progress in plugging a gaping hole in prior
understanding of the gravity fields of SD-branes.Comment: References added. Analysis for much broader range of solutions
presented. Conclusions unchanged. Time-reversal symmetric examples ruled out,
new examples are provide
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
In Situ Observations of the Deformation Behavior and Fracture Mechanisms of Ti-45Al-2Nb-2Mn+0.8 vol pct TiB₂
The deformation and fracture mechanisms of a nearly lamellar Ti-45Al-2Nb-2Mn (at. pct) + 0.8 vol pct TiB₂ intermetallic, processed into an actual low-pressure turbine blade, were examined by means of in situ tensile and tensile-creep experiments performed inside a scanning electron microscope (SEM). Low elongation-to-failure and brittle fracture were observed at room temperature, while the larger elongations-to-failure at high temperature facilitated the observation of the onset and propagation of damage. It was found that the dominant damage mechanisms at high temperature depended on the applied stress level. Interlamellar cracking was observed only above 390 MPa, which suggests that there is a threshold below which this mechanism is inhibited. Failure during creep tests at 250 MPa was controlled by intercolony cracking. The in situ observations demonstrated that the colony boundaries are damage nucleation and propagation sites during tensile creep, and they seem to be the weakest link in the microstructure for the tertiary creep stage. Therefore, it is proposed that interlamellar areas are critical zones for fracture at higher stresses, whereas lower stress, high-temperature creep conditions lead to intercolony cracking and fracture.The authors are grateful to Industria de Turbo Propulsores, S.A. for supplying the intermetallic blades. Funding from the Spanish Ministry of Science and Innovation through projects MAT2009-14547-C02-01 and MAT2009-14547-C02-02 is acknowledged. The Madrid Regional Government supported this project partially through the ESTRUMAT grant P2009/MAT-1585. C.J.B. acknowledges the support from Grant SAB2009-0045 from the Spanish Ministry of Education for his sabbatical stage in Madrid.Publicad
The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies
Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
- …