8 research outputs found

    Immunodepletion of high-abundant proteins from acute and chronic wound fluids to elucidate low-abundant regulators in wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of wound healing consists of several well distinguishable and finely tuned phases. For most of these phases specific proteins have been characterized, although the underlying mechanisms of regulation are not yet fully understood. It is an open question as to whether deficits in wound healing can be traced back to chronic illnesses such as diabetes mellitus. Previous research efforts in this field focus largely on a restricted set of marker proteins due to the limitations detection by antibodies imposes. For mechanistic purposes the elucidation of differences in acute and chronic wounds can be addressed by a less restricted proteome study. Mass spectrometric (MS) methods, e.g. multi dimensional protein identification technology (MudPIT), are well suitable for this complex theme of interest. The human wound fluid proteome is extremely complex, as is human plasma. Therefore, high-abundant proteins often mask the mass spectrometric detection of lower-abundant ones, which makes a depletion step of such predominant proteins inevitable.</p> <p>Findings</p> <p>In this study a commercially available immunodepletion kit was evaluated for the detection of low-abundant proteins from wound fluids. The dynamic range of the entire workflow was significantly increased to 5-6 orders of magnitude, which makes low-abundant regulatory proteins involved in wound healing accessible for MS detection.</p> <p>Conclusion</p> <p>The depletion of abundant proteins is absolutely necessary in order to analyze highly complex protein mixtures such as wound fluids using mass spectrometry. For this the used immunodepletion kit is a first but important step in order to represent the entire dynamic range of highly complex protein mixtures in the future.</p

    Boric acid gel enrichment of glycosylated proteins in human wound fluids

    No full text
    The enrichment of glycosylated proteins by glycocapturing materials plays a pivotal role for the investigation of polysaccharide containing proteins in disease pathogenesis. Hence, we investigated a boric acid gel as a binding material for glycoprotein enrichment. The bovine proteins alpha-1-acid-glycoprotein (A1AG) and alpha-2-HS-glycoprotein (fetuin A) were spiked in human chronic wound fluids and were subsequently enriched by a boric acid gel affinity chromatography (BAGAC). The enrichment efficiency was evaluated by western blot analysis and mass spectrometry. Additionally, glycoproteins of human wound fluids from diabetes mellitus patients with chronic foot ulcers were analyzed after BAGAC enrichments. In total 104 glycoproteins were identified, with reported glycosylation sites. 60 proteins were detected in at least 2 out of 3 biological replicates and were used for quantitative analysis between the bound and unbound fractions. Almost 80% of these glycoproteins were more prominent in the bound fraction. Only 2 glycoproteins revealed higher spectral counts in the flow through fraction compared to the bound fraction. These findings demonstrate the capability of the BAGAC material to enrich glycosylated proteins from complex human wound fluids.8 page(s

    Oncolytic activities of host defense peptides

    No full text
    Cancer continues to be a leading source of morbidity and mortality worldwide in spite of progress in oncolytic therapies. In addition, the incidence of cancers affecting the breast, kidney, prostate and skin among others continue to rise. Chemotherapeutic drugs are widely used in cancer treatment but have the serious drawback of nonspecific toxicity because these agents target any rapidly dividing cell without discriminating between healthy and malignant cells. In addition, many neoplasms eventually become resistant to conventional chemotherapy due to selection for multidrug-resistant variants. The limitations associated with existing chemotherapeutic drugs have stimulated the search for new oncolytic therapies. Host defense peptides (HDPs) may represent a novel family of oncolytic agents that can avoid the shortcomings of conventional chemotherapy because they exhibit selective cytotoxicity against a broad spectrum of malignant human cells, including multi-drug-resistant neoplastic cells. Oncolytic activity by HDPs is usually via necrosis due to cell membrane lysis, but some HDPs can trigger apoptosis in cancer cells via mitochondrial membrane disruption. In addition, certain HDPs are anti-angiogenic which may inhibit cancer progression. This paper reviews oncolytic HDP studies in order to address the suitability of selected HDPs as oncolytic therapies

    Host defense peptides as effector molecules of the innate immune response

    No full text
    Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections

    A Synthetic Sandalwood Odorant Induces Wound-Healing Processes in Human Keratinocytes via the Olfactory Receptor OR2AT4

    Get PDF
    As the outermost barrier of the body, the skin is exposed to multiple environmental factors, including temperature, humidity, mechanical stress, and chemical stimuli such as odorants that are often used in cosmetic articles. Keratinocytes, the major cell type of the epidermal layer, express a variety of different sensory receptors that enable them to react to various environmental stimuli and process information in the skin. Here we report the identification of a novel type of chemoreceptors in human keratinocytes, the olfactory receptors (ORs). We cloned and functionally expressed the cutaneous OR, OR2AT4, and identified Sandalore, a synthetic sandalwood odorant, as an agonist of this receptor. Sandalore induces strong Ca2+ signals in cultured human keratinocytes, which are mediated by OR2AT4, as demonstrated by receptor knockdown experiments using RNA interference. The activation of OR2AT4 induces a cAMP-dependent pathway and phosphorylation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen–activated protein kinases (p38 MAPK). Moreover, the long-term stimulation of keratinocytes with Sandalore positively affected cell proliferation and migration, and regeneration of keratinocyte monolayers in an in vitro wound scratch assay. These findings combined with our studies on human skin organ cultures strongly indicate that the OR 2AT4 is involved in human keratinocyte re-epithelialization during wound-healing processes

    Suppression of soft tissue sarcoma growth by a host defense-like lytic peptide

    No full text
    Background:\textit {Background:} Soft tissue sarcoma (STS) is an anatomically and histologically heterogeneous neoplasia that shares a putative mesenchymal cell origin. The treatment with common chemotherapeutics is still unsatisfying because of association with poor response rates. Although evidence is accumulating for potent oncolytic activity of host defense peptides (HDPs), their potential therapeutic use is often limited by poor bioavailability and inactivation in serum. Therefore, we tested the designer host defense-like lytic D,L-amino acid peptide [D]K3H3L9[D]-K_{3}H_{3}L_{9} on two STS cell lines in vitro\textit {in vitro} and also in an athymic and syngeneic mouse model. In recent studies the peptide could show selectivity against prostate carcinoma cells and also an active state in serum. Methods:\textit {Methods:} In vitro\textit {In vitro} the human synovial sarcoma cell line SW982, the murine fibrosarcoma cell line BFS-1 and primary human fibroblasts as a control were exposed to [D]K3H3L9[D]-K_{3}H_{3}L_{9}, a 15mer D,L-amino acid designer HDP. Cell vitality in physiological and acidic conditions (MTT-assay), cell growth (BrdU) and DNA-fragmentation (TUNEL) were investigated. Membrane damage at different time points could be analyzed with LDH assay. An antibody against the tested peptide and recordings using scanning electron microscopy could give an inside in the mode of action. In vivo\textit {In vivo} [D]K3H3L9[D]-K_{3}H_{3}L_{9} was administered intratumorally in an athymic and syngeneic (immunocompetent) mouse model with SW982 and BFS-1 cells, respectively. After three weeks tumor sections were histologically analyzed. Results:\textit {Results:} The peptide exerts rapid and high significant cytotoxicity and antiproliferating activity against the malignant cell lines, apparently via a membrane disrupting mode of action. The local intratumoral administration of [D]K3H3L9[D]-K_{3}H_{3}L_{9} in the athymic and syngeneic mice models significantly inhibited tumor progression. The histological analyses of the tumor sections revealed a significant antiproliferative, antiangiogenic activity of the treatment group. Conclusion:\textit {Conclusion:} These findings demonstrate the in vitro\textit {in vitro} and in vivo\textit {in vivo} oncolytic activity of [D]K3H3L9[D]-K_{3}H_{3}L_{9} in athymic and syngeneic mouse models
    corecore