793 research outputs found

    Realizing lateral wrap-gated nanowire FETs: Controlling gate length with chemistry rather than lithography

    Full text link
    An important consideration in miniaturizing transistors is maximizing the coupling between the gate and the semiconductor channel. A nanowire with a coaxial metal gate provides optimal gate-channel coupling, but has only been realized for vertically oriented nanowire transistors. We report a method for producing laterally oriented wrap-gated nanowire field-effect transistors that provides exquisite control over the gate length via a single wet etch step, eliminating the need for additional lithography beyond that required to define the source/drain contacts and gate lead. It allows the contacts and nanowire segments extending beyond the wrap-gate to be controlled independently by biasing the doped substrate, significantly improving the sub-threshold electrical characteristics. Our devices provide stronger, more symmetric gating of the nanowire, operate at temperatures between 300 to 4 Kelvin, and offer new opportunities in applications ranging from studies of one-dimensional quantum transport through to chemical and biological sensing.Comment: 16 pages, 5 figures. Submitted version, published version available at http://http://pubs.acs.org/journal/nalef

    Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire

    Full text link
    Nanowire heterostructures define high-quality few-electron quantum dots for nanoelectronics, spintronics and quantum information processing. We use a cooled scanning probe microscope (SPM) to image and control an InAs quantum dot in an InAs/InP nanowire, using the tip as a movable gate. Images of dot conductance vs. tip position at T = 4.2 K show concentric rings as electrons are added, starting with the first electron. The SPM can locate a dot along a nanowire and individually tune its charge, abilities that will be very useful for the control of coupled nanowire dots

    Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design

    Get PDF
    Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires

    Probing of individual semiconductor nanowhiskers by TEM-STM

    Get PDF
    Along with rapidly developing nanotechnology, new types of analytical instruments and techniques are needed. Here we report an alternative procedure for electrical measurements on semiconductor nanowhiskers, allowing precise selection and visual control at close to atomic resolution. We use a combination of two powerful microscope techniques, scanning tunneling microscopy (STM) and simultaneous viewing in a transmission electron microscope (TEM). The STM is mounted in the sample holder for the TEM. We describe here a method for creating an ohmic contact between the STM tip and the nanowhisker. We examine three different types of STM tips and present a technique for cleaning the STM tip in situ. Measurements on 1-mum-tall and 40-nm-thick epitaxially grown InAs nanowhiskers show an ohmic contact and a resistance of down to 7 kOmega

    Half-Integer Shapiro Steps in a Short Ballistic InAs Nanowire Josephson Junction

    Full text link
    We report on half-integer Shapiro steps observed in an InAs nanowire Josephson junction. We observed the Shapiro steps of the short ballistic InAs nanowire Josephson junction and found anomalous half-integer steps in addition to the conventional integer steps. The half-integer steps disappear as the temperature increases or transmission of the junction decreases. These experimental results agree closely with numerical calculation of the Shapiro response for the skewed current phase relation in a short ballistic Josephson junction

    InAs nanowire metal-oxide-semiconductor capacitors

    Get PDF
    We present a capacitance-voltage study for arrays of vertical InAs nanowires. Metal-oxide-semiconductor (MOS) capacitors are obtained by insulating the nanowires with a conformal 10 nm HfO2 layer and using a top Cr/Au metallization as one of the capacitor's electrodes. The described fabrication and characterization technique enables a systematic investigation of the carrier density in the nanowires as well as of the quality of the MOS interface

    Dominant non-local superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire

    Full text link
    Cooper pair splitting (CPS) can induce non-local correlation between two normal conductors coupling to a superconductor. CPS into a double one-dimensional electron gas is an appropriate platform for extracting large amount of entangled electron pairs and one of the key ingredients for engineering Majorana Fermions with no magnetic field. Here we study CPS using a Josephson junction of a gate-tunable ballistic InAs double nanowire. The measured switching current into the two nanowires significantly larger than sum of that into the respective nanowires, indicating the inter-wire superconductivity dominant compared to the intra-wire superconductivity. From dependence on the number of propagating channels in the nanowires, the observed CPS is assigned to one-dimensional electron-electron interaction. Our results will pave the way for utilizing one-dimensional electron-electron interaction to reveal physics of high-efficient CPS and engineer Majorana Fermions in double nanowire systems via CPS

    Oxygen-Alkali Treatment of Cellobiose.

    Full text link
    corecore