78 research outputs found

    Is thymoquinone an antioxidant?

    Get PDF

    Effect of α-lipoic acid and dihydrolipoic acid on ischemia/reperfusion injury of the heart and heart mitochondria

    Get PDF
    AbstractThe aim of the present study was to evaluate a possible interference of a-lipoic acid (LA) or its reduced form (dithiol dihydrolipoic acid = DHLA) in the cardiac ischemia/reperfusion injury both at the level of the intact organ and at the subcellular level of mitochondria. In order to follow the effect of LA on the ischemia/reperfusion injury of the heart the isolated perfused organ was subjected to total global ischemia and reperfusion in the presence and absence of different concentrations of LA. Treatment with 0.5 μM LA improved the recovery of hemodynamic parameters; electrophysiological parameters were not influenced. However, application of 10 μM LA to rat hearts further impaired the recovery of hemodynamic functions and prolonged the duration of severe rhythm disturbances in comparison to reperfusion of control hearts. Treatment of isolated mitochondria with any concentration of DHLA could not prevent the impairment of respiratory-linked energy conservation caused by the exposure of mitochondria to `reperfusion' conditions. However, DHLA was effective in decreasing the formation and the existence of mitochondria) superoxide radicals (O2−) Apart from :ts direct 02-scavenging activities DHLA was also found to control mitochondria) O2− formation indirectly by regulating redox-cycling ubiquinone. It is suggested that impairment of this mitochondria) O2− generator mitigates postischemic oxidative stress which in turn reduces damage to hemodynamic heart function

    Extending the life of a ship by extending her length: Technical and economic assessment of lengthening of inland vessels

    Get PDF
    The objective of MoVe IT! (Modernisation of vessels for inland waterway freight transport) project is to investigate cost-effective options for modernisation of the European inland fleet. One of the project tasks was to examine the feasibility of lengthening of existing small vessels (LOA < 86m) from both the technical and the economic point of view. With respect to that, the gradual lengthening (in several predefined steps) of two typical inland vessels of CEMT class II and III was examined. For each step, the ship structure scantlings were verified against the rules of classification societies, the manoeuvring features were simulated and the power necessary for attaining certain speed was calculated. Finally, the economic and environmental impacts of lengthening were assessed. The results of the analysis confirmed that lengthening can be viable, in particular for larger vessels (in this case, class III) where the payback periods were found to be relatively short. In addition, the lengthening proved to have a positive effect from the environmental point of view. The analysis also demonstrated that there are conditions related to waterway characteristics and economic environment under which the lengthening would not pay off, even though it would be technically feasible

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling

    Get PDF
    Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts

    The mystery of reactive oxygen species derived from cell respiration.

    No full text
    Mitochondrial respiration is considered to provide reactive oxygen species (ROS) as byproduct of regular electron transfer. Objections were raised since results obtained with isolated mitochondria are commonly transferred to activities of mitochondria in the living cell. High electrogenic membrane potential was reported to trigger formation of mitochondrial ROS involving complex I and III. Suggested bioenergetic parameters, starting ROS formation, widely change with the isolation mode. ROS detection systems generally applied may be misleading due to possible interactions with membrane constituents or electron carriers. Avoiding these problems no conditions reported to transform mitochondrial respiration to a radical source were confirmed. However, changing the physical membrane state affected the highly susceptible interaction of the ubiquinol/bc1 redox complex such that ROS formation became possible

    Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    No full text
    Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C) while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation
    corecore