7 research outputs found

    Cholesterol acquisition by Mycobacterium tuberculosis

    Get PDF
    In this issue of Virulence, Ramon-Garcia et al. demonstrate the requirement of a mycobacterial efflux pump during growth on cholesterol. In this editorial I replace the study in the context of nutrient acquisition by Mycobacterium tuberculosis

    Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic

    Get PDF
    Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr −1, –1.5, −2, –3, −3.2 or −5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance

    Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in Mycobacterium tuberculosis

    Get PDF
    [Image: see text] The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against Mycobacterium tuberculosis (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate

    Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding

    Get PDF
    Data availability: All data generated during this study that support the findings are included in the manuscript or in the Supplementary Information.Copyright © 2022, Furniss et al. Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.MRC Career Development Award MR/M009505/1 (to D.A.I.M.); the institutional BBSRC-DTP studentships BB/M011178/1 (to N.K.) and BB/M01116X/1 (to H.L.P.); the BBSRC David Philips Fellowship BB/M02623X/1 (to J.M.A.B.); the ISSF Wellcome Trust grant 105603/Z/14/Z (to G.L.-M.); the Brunel Research Innovation and Enterprise Fund, Innovate UK and British Society for Antimicrobial Chemotherapy grants 2018-11143, 37800 and BSAC-2018-0095, respectively (to R.R.MC); the Swiss National Science Foundation Postdoc Mobility and Ambizione Fellowships P300PA_167703 and PZ00P3_180142, respectively (to D.G.)

    Lipids as biomarkers of cancer and bacterial infections

    No full text
    Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections

    A glycomic approach reveals a new mycobacterial polysaccharide

    No full text
    Mycobacterium tuberculosis lipoarabinomannan (LAM) and biosynthetically related lipoglycans and glycans play an important role in host–pathogen interactions. Therefore, the elucidation of the complete biosynthetic pathways of these important molecules is expected to afford novel therapeutic targets. The characterization of biosynthetic enzymes and transporters involved in the formation and localization of these complex macromolecules in the bacterial cell envelope largely relies on genetic manipulation of mycobacteria and subsequent analyses of lipoglycan structural alterations. However, lipoglycans are present in relatively low amounts. Their purification to homogeneity remains tedious and time-consuming. To overcome these issues and to reduce the biomass and time required for lipoglycan purification, we report here the development of a methodology to efficiently purify lipoglycans by sodium deoxycholate–polyacrylamide gel electrophoresis. This faster purification method can be applied on a small amount of mycobacterial cells biomass (10–50 mg), resulting in tens of micrograms of purified lipoglycans. This amount of purified products was found to be sufficient to undertake structural analyses of lipoglycans and glycans carbohydrate domains by a combination of highly sensitive analytical procedures, involving cryoprobe NMR analysis of intact macromolecules and chemical degradations monitored by gas chromatography and capillary electrophoresis. This glycomic approach was successfully applied to the purification and structural characterization of a newly identified polysaccharide, structurally related to LAM, in the model fast-growing species Mycobacterium smegmatis
    corecore