10 research outputs found
Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts
Production of sphingosineâ1âphosphate (S1P) is linked to 17ÎČâestradiol (E2) activity in many estrogenâresponsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1âÎŒM S1P, or 1âÎŒM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblastârelated mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased boneâspecific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a coâmediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors
Creatine energy substrate increases bone density in the Pahenu2 classical PKU mouse in the context of phenylalanine restriction
Pathophysiology of osteopenia in phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is poorly characterized. The Pahenu2 mouse is universally osteopenic where dietary phenylalanine (Phe) management with amino acid defined chow does not improve bone density. We previously demonstrated Pahenu2 osteopenia owes to a skeletal stem cell (SSC) developmental deficit mediated by energy dysregulation and oxidative stress. This investigation demonstrates complexity of Pahenu2 SSC energy dysregulation. Creatine use by bone tissue is recognized. In vitro Pahenu2 SSCs in osteoblast differentiation respond to creatine with increased in situ alkaline phosphatase activity and increased intracellular ATP content. Animal studies applied a 60-day creatine regimen to Pahenu2 and control cohorts. Control cohorts include unaffected littermates (wt/wt), Pahenu2 receiving no intervention, and dietary Phe restricted Pahenu2. Experimental cohorts (Phe unrestricted Pahenu2, Phe restricted Pahenu2) were provided 1% creatine ad libitum in water. After 60Â days, microcomputed tomography assessed bone metrics. Equivalent osteopenia occurs in Phe-restricted and untreated Pahenu2 control cohorts. In Phe unrestricted Pahenu2, creatine was without effect as bone density remained equivalent to Pahenu2 control cohorts. Alternatively, Phe-restricted Pahenu2 receiving creatine present increased bone density. We hypothesize small molecule dysregulation in untreated Pahenu2 disallows creatine utilization; therefore, osteopenia persisted. Dietary Phe restriction enables creatine utilization to enhance SSC osteoblast differentiation and improve in vivo bone density. PKU intervention singularly focused on Phe reduction enables residual disease including osteopenia and neurologic elements. Intervention concurrently addressing Phe homeostasis and energy dysregulation will improve disease elements refractory to standard of care Phe reduction mono-therapy
Recommended from our members
Epithelial-like transport of mineral distinguishes bone formation from other connective tissues
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and Îłâcarboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs
Chlorideâhydrogen antiporters ClCâ3 and ClCâ5 drive osteoblast mineralization and regulate fineâstructure bone patterning in vitro
Osteoblasts form an epitheliumâlike layer with tight junctions separating bone matrix from extracellular fluid. During mineral deposition, calcium and phosphate precipitation in hydroxyapatite liberates 0.8 mole of H+ per mole Ca+2. Thus, acid export is needed for mineral formation. We examined ion transport supporting osteoblast vectorial mineral deposition. Previously we established that Na/H exchangers 1 and 6 are highly expressed at secretory osteoblast basolateral surfaces and neutralize massive acid loads. The Na/H exchanger regulatory factorâ1 (NHERF1), a pdzâorganizing protein, occurs at mineralizing osteoblast basolateral surfaces. We hypothesized that highâcapacity proton transport from matrix into osteoblast cytosol must exist to support acid transcytosis for mineral deposition. Gene screening in mineralizing osteoblasts showed dramatic expression of chlorideâproton antiporters ClCâ3 and ClCâ5. Antibody localization showed that ClCâ3 and ClCâ5 occur at the apical secretory surface facing the bone matrix and in membranes of buried osteocytes. Surprisingly, the Clcn3â/â mouse has only mildly disordered mineralization. However, Clcn3â/â osteoblasts have large compensatory increases in ClCâ5 expression. Clcn3â/â osteoblasts mineralize in vitro in a striking and novel trabecular pattern; wildâtype osteoblasts form bone nodules. In mesenchymal stem cells from Clcn3â/â mice, lentiviral ClCâ5 shRNA created Clcn3â/â, ClCâ5 knockdown cells, validated by western blot and PCR. Osteoblasts from these cells produced no mineral under conditions where wildâtype or Clcn3â/â cells mineralize well. We conclude that regulated acid export, mediated by chlorideâproton exchange, is essential to drive normal bone mineralization, and that CLC transporters also regulate fine patterning of bone
Suppression of Arthritis-Induced Bone Erosion by a CRAC Channel Antagonist
Objective: We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. Methods: Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4- dichloropropionaniline (DCPA) and a placebo was administered 1 day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. Results: Assays, by blinded observers, of arthritis severity showed that DCPA, 21 mg/kg/day, suppressed arthritis development over 3 weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by ”CT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12â17 days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20 days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. Conclusions: DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits
Suppression of arthritis-induced bone erosion by a CRAC channel antagonist
OBJECTIVE: We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. METHODS: Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4-dichloropropionaniline (DCPA) and a placebo was administered 1â
day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. RESULTS: Assays, by blinded observers, of arthritis severity showed that DCPA, 21â
mg/kg/day, suppressed arthritis development over 3â
weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by ”CT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12â17â
days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20â
days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. CONCLUSIONS: DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits
Chloride/proton antiporters ClC3 and ClC5 support bone formation in mice
Acid transport is required for bone synthesis by osteoblasts. The osteoblast basolateral surface extrudes acid by Na+/H+ exchange, but apical proton uptake is undefined. We found high expression of the Clâ/H+ exchanger ClC3 at the bone apical surface. In mammals ClC3 functions in intracellular vesicular chloride transport, but when we found Clâ dependency of H+ transport in osteoblast membranes, we queried whether ClC3 Clâ/H+ exchange functions in bone formation. We used ClC3 knockout animals, and closely-related ClC5 knockout animals: In vitro studies suggested that both ClC3 and ClC5 might support bone formation. Genotypes were confirmed by total exon sequences. Expression of ClC3, and to a lesser extent of ClC5, at osteoblast apical membranes was demonstrated by fluorescent antibody labeling and electron microscopy with nanometer gold labeling. Animals with ClC3 or ClC5 knockouts were viable. In ClC3 or ClC5 knockouts, bone formation decreased ~40 % by calcein and xylenol orange labeling in vivo. In very sensitive micro-computed tomography, ClC5 knockout reduced bone relative to wild type, consistent with effects of ClC3 knockout, but varied with specific histological parameters. Regrettably, ClC5-ClC3 double knockouts are not viable, suggesting that ClC3 or ClC5 activity are essential to life. We conclude that ClC3 has a direct role in bone formation with overlapping but probably slightly smaller effects of ClC5. The mechanism in mineral formation might include ClC H+ uptake, in contrast to ClC3 and ClC5 function in cell vesicles or other organs