25 research outputs found
Neighbors' income, public goods, and well‐being
How does neighbors' income affect individual well‐being? Our analysis is based on rich U.S. local data from the Behavioral Risk Factor Surveillance System, which contains information on where respondents live and their self‐reported well‐being. We find that the effect of neighbors' income on individuals' self‐reported well‐being varies with the size of the neighborhood included. In smaller areas such as ZIP codes, we find a positive relationship between median income and individuals' life satisfaction, whereas it is the opposite at the county, MSA, and state levels. We provide evidence that local public goods and local area characteristics such as unemployment, criminality, and poverty rates drive the association between satisfaction and neighbors' income at the ZIP code level. The neighbors' income effects are mainly concentrated among poorer individuals and are as large as one quarter of the effect of own income on self‐reported well‐being
Effects of Biosolarization with fresh sheep manure on soil physical properties of pepper greenhouses in Campo de Cartagena
[SPA] La evaluación de cambios en las propiedades físicas del suelo tras aplicar enmiendas orgánicas resulta relevante al evaluar alternativas no químicas al bromuro de metilo en programas de desinfección de suelos de cultivos de pimiento en el Campo de Cartagena. La aplicación de la biosolarización a partir de una dosis de10 kg m-2 de estiércol fresco de ovino ha supuesto reducir la densidad aparente, únicamente en el primer perfil de suelo (0-10 cm) con respecto al control sin desinfectar. La mejora de la infiltración acumulada y la velocidad de infiltración han contribuido a una mejor dinámica del agua en el suelo, aspecto de enorme importancia en el cultivo de pimiento bajo invernadero debido a su alta sensibilidad a la asfixia radicular.
[ENG] The evaluation of changes in soil physical properties after organic amendments application is relevant when assessing non-chemical alternatives to methyl bromide for pepper crop soil disinfection programs in the Campo de Cartagena. Applying biosolarization with fresh sheep manure at a dose of 10 kg m-2 implied a soil bulk density reduction in only the shallower soil profile (0-10 cm) when compared with non-disinfected control. The improvement of the cumulative infiltration and infiltration rate have contributed to a better water dynamics in the soil, an aspect of enormous importance in the cultivation of pepper in greenhouses due to its high sensitivity to root asphyxia
Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes
[EN] An isolate of chili pepper mild mottle virus (CPMMV-Sp; GenBank OQ920979) with a 99% identity to CPMMV (GenBank MN164455.1) was found in symptomatic pepper plants in Spain. RACE analysis, performed using a stem-loop primer developed in this study to prime at the end of the introduced poly(A)/(U) tail, revealed the presence of an extra 22 nt at the 5' end, starting with a cytosine, which were essential to generate infectious clones. However, the 5' terminal cytosine was dispensable for initiating the infection. The design of two specific digoxigenin riboprobes targeting the more divergent area of CPMMV-Sp, compared to the closely related bell pepper mottle virus (BPeMV) (identity percentage of 80.6% and 75.8%, respectively), showed that both probes specifically detected CPMMV-Sp when the hybridization was performed at 68oC and 60oC, respectively. However, the BPeMV probe, targeting a region with an 89.4% identity percentage to CPMMV-Sp, showed cross-hybridization at 60oC but not at 68oC. The comparison of the detection limits between molecular hybridization and RT-PCR techniques revealed that the former was 125 times less sensitive than RT-PCR. The analysis of the vertical transmission of CPMMV-Sp using seeds from naturally or mechanically infected pepper plants revealed a transmission percentage ranging from 0.9% to 8.5%. Finally, the analysis of the resistance of capsicum species carrying different alleles of the L gene (L1, L2, L3, and L4) revealed that varieties with the L1 gene were infected by CPMMV-Sp (20-40% of inoculated plants), while varieties with the L2, L3, and L4 genes were resistant.This work was supported by grants PID2020-115571RB-100 and TED2021-131949B-I00 from the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). Project 20-00032-VIRUSPIM from Dept. of Environment, Territorial Planning, Agriculture and Fisheries (Basque Government). Mikel Ojinaga was the recipient of a PhD contract "Introduction of Resistance to Tobamovirus and other Viruses in Landraces of Gernika Pepper and Ibarra Chili Pepper" (Order of 24 October 2018 of the Minister of Economic Development and Competitiveness of the Basque Government).
Open Access funding provided thanks to the
CRUE-CSIC agreement with Springer Nature.Ontañon, C.; Ojinaga, M.; Larregla, S.; Zabala, JA.; Reva, A.; Losa, A.; Heribia, R.... (2023). Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes. European Journal of Plant Pathology. 1-18. https://doi.org/10.1007/s10658-023-02765-1118Al-Tamimi, N., Kawas, H., & Mansour, A. (2010). Seed Transmission Viruses in Squash Seeds (Cucurbita pepo) in Southern Syria and Jordan Valley. Jordan Journal of Agricultural Sciences, 5(4), 497–506. https://journals.ju.edu.jo/JJAS/article/view/864.Bhat, A.I. & Rao, G.P. (2020). Transmission Through Seeds. In: Characterization of Plant Viruses. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_10Davino, S., Caruso, A. G., Bertacca, S., Barone, S., & Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants, 9(11), 1–13. https://doi.org/10.3390/PLANTS9111615Demski, J. W. (1981). Tobacco Mosaic Virus Is Seedborne in Pimiento Peppers. Plant Disease, 65(9), 723. https://doi.org/10.1094/PD-65-723Di Dato, F., Parisi, M., Cardi, T., & Tripodi, P. (2015). Genetic diversity and assessment of markers linked to resistance and pungency genes in Capsicum germplasm. Euphytica, 204(1), 103–119.Dombrovsky, A., Smith, E., Dombrovsky, A., & Smith, E. (2017). Seed Transmission of Tobamoviruses: Aspects of Global Disease Distribution. Advances in Seed Biology. https://doi.org/10.5772/INTECHOPEN.70244Gallois, J. L., Moury, B., & German-Retana, S. (2018). Role of the genetic background in resistance to plant viruses. International Journal of Molecular Sciences, 19(10), 2856. https://doi.org/10.3390/ijms19102856Genda, Y., Kanda, A., Hamada, H., Sato, K., Ohnishi, J., & Tsuda, S. (2007). Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology, 97(7), 787–793.Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., & Tsuda, S. (2011). Immunolocalization of Pepper mild mottle virus in developing seeds and seedlings of Capsicum annuum. Journal of General Plant Pathology, 77(3), 201–208. https://doi.org/10.1007/s10327-011-0307-0Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., Ohnishi, J., & Tsuda, S. (2005). Immunolocalization of Pepper mild mottle virus in Capsicum annuum seeds. Journal of General Plant Pathology, 71(3), 238–242. https://doi.org/10.1007/S10327-005-0189-0Ghodoum, P. M. H., & Keshavarz-Tohid, V. (2020). Identification and phylogenetic analysis of a tobamovirus causing hibiscus (Hibiscus rosa-sinensis L.) mosaic disease in Iran. Journal of Plant Pathology, 102(3), 813–824. https://doi.org/10.1007/S42161-020-00510-9/TABLES/3Gniffke, P. A., Shieh, S. C., Lin, S. W., Sheu, Z. M., Chen, J. R., Ho, F. I., et al. (2013). Pepper research and breeding at AVRDC - The World Vegetable Center. Breakthroughs in the genetics and breeding of capsicum and eggplantProceedings of the XV EUCARPIA meeting. https://worldveg.tind.io/record/50155. Accessed 2-4 Sept 2013Groth-Helms, D., Juszczak, S., & Adkins, S. (2022). First report of Chili pepper mild mottle virus in calibrachoa in the United States. New Disease Reports, 46(1), e12120. https://doi.org/10.1002/NDR2.12120Gullino, M., Albajes, R., & Nicot, P. (2020). Integrated Pest and Disease Management in Greenhouse Crops. Springer International Publishing AG, 691 p., https://doi.org/10.1007/978-3-030-22304-5Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F., & Pallás, V. (2005a). Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or “polyprobe.” Journal of Virological Methods, 124(1–2), 49–55. https://doi.org/10.1016/j.jviromet.2004.11.003Herranz, M. C., Sanchez-Navarro, J. A., Sauri, A., Mingarro, I., & Pallas, V. (2005b). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 339(1), 31–41. https://doi.org/10.1016/j.virol.2005.05.020HuiJie, W., BiXia, Q., HongYun, C., Bin, P., JianHe, C., & QinSheng, G. (2011). The rate of seed contamination and transmission of Cucumber green mottle mosaic virus in watermelon and melon. Scientia Agricultura Sinica, 44(7), 1527–1532.Hull, R. (2002). Matthews’ Plant Virology (Vol. 4th). Academic Press.Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54, 55–78. https://doi.org/10.1146/ANNUREV-PHYTO-080615-100217Jeong, J., Ju, H., & Noh, J. (2014). A Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20(3), 173–181. https://doi.org/10.5423/rpd.2014.20.3.173Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/BIOINFORMATICS/BTS199Kenyon, L., Kumar, S., Tsai, W. S., & Hughes, J. A. (2014). Virus diseases of peppers (Capsicum spp.) and their control. Advances in Virus Research, 90, 297–354. https://doi.org/10.1016/B978-0-12-801246-8.00006-8Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096Lee, H. K., Kim, S. Y., Yang, H. J., Lee, D. S., Kwon, B., Lee, D. Y., et al. (2020). The Detection of Plant Viruses in Korean Ginseng (Panax ginseng) through RNA Sequencing. The Plant Pathology Journal, 36(6), 643–650. https://doi.org/10.5423/PPJ.NT.07.2020.0137Li, Y., Tan, G., Lan, P., Zhang, A., Liu, Y., Li, R., & Li, F. (2018). Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers. Journal of Virological Methods, 259, 122–128. https://doi.org/10.1016/j.jviromet.2018.06.012Mckinney, H. H. (1952). Two strains of Tobacco-mosaic virus, one of which is seed-borne in an etch-immune pungent Pepper. Plant Disease Reporter, 36(5), 184–187.Montes, N., & Pagán, I. (2019). Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. Plants, 8(9), 304. https://doi.org/10.3390/PLANTS8090304Moury, B., & Verdin, E. (2012). Viruses of pepper crops in the Mediterranean basin: A remarkable stasis. Advances in Virus Research, 84, 127–162. https://doi.org/10.1016/B978-0-12-394314-9.00004-XNagai, Y. (1981). Control of mosaic diseases of tomato and sweet pepper caused by Tobacco mosaic virus. Special Bulletin of the Chiba Prefectural Agricultural Experiment Station, 9, 1–109. https://cir.nii.ac.jp/crid/1571135650268603264.Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998a). Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods in Molecular Biology (Clifton. N.J.), 81, 461–468. https://doi.org/10.1385/0-89603-385-6:461Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998b). Detection of Plant RNA Viruses by Nonisotopic Dot-Blot Hybridization. In Plant Virology Protocols 81, 461–468. Humana Press. https://doi.org/10.1385/0-89603-385-6:461Pallas, V., Sanchez-Navarro, J. A., & James, D. (2018). Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Frontiers in Microbiology, 9, 2087. https://doi.org/10.3389/fmicb.2018.02087Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., & Mingarro, I. (2014). The Tobacco Mosaic Virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016–3026. https://doi.org/10.1128/jvi.03648-13Peiró, A., Pallás, V., & Sánchez-Navarro, J. A. (2012). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132, 469–475. https://doi.org/10.1007/s10658-011-9893-0Reingold, V., Lachman, O., Belausov, E., Koren, A., Mor, N., & Dombrovsky, A. (2016). Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Annals of Applied Biology, 168(1), 29–40. https://doi.org/10.1111/AAB.12238Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040454Salem, N. M., Abumuslem, M., Turina, M., Samarah, N., Sulaiman, A., Abu-Irmaileh, B., & Ata, Y. (2022). New Weed Hosts for Tomato Brown Rugose Fruit Virus in Wild Mediterranean Vegetation. Plants, 11(17), 2287. https://doi.org/10.3390/PLANTS11172287/S1Salgado-Ortíz, H., De La Torre-Almaraz, R., Sánchez-Navarro, J. Á., & Pallás, V. (2020). Identification and genomic characterization of a novel tobamovirus from prickly pear cactus. Archives of Virology, 165(3), 781–784. https://doi.org/10.1007/s00705-020-04528-3Sanchez-Navarro, J. A., Aparicio, F., Rowhani, A., & Pallás, V. (1998). Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of prunus necrotic ringspot virus in herbaceous and Prunus hosts. Plant Pathology, 47(6), 780–786. https://doi.org/10.1046/j.1365-3059.1998.00301.xSanchez-Navarro, J. A., Canizares, M. C., Cano, E. A., & Pallas, V. (1999). Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. Journal of Virological Methods, 82(2), 167–175. https://doi.org/10.1016/S0166-0934(99)00097-XSanchez-Navarro, J. A., Cano, E. A., & Pallas, V. (1996). Non-radioactive molecular hybridization detection of carnation mottle virus in infected carnations and its comparison to serological and biological techniques. Plant Pathology, 45(2), 375–382. https://doi.org/10.1046/j.1365-3059.1996.d01-1.xSanchez-Navarro, J. A., Cooper, C. N., & Pallas, V. (2018). Polyvalent detection of members of the genus potyvirus by Molecular Hybridization using a genus-probe. Phytopathology, 108, 1522–1529. https://doi.org/10.1094/phyto-04-18-0146-rSánchez-Navarro, J. A., Corachán, L., Font, I., Alfaro-Fernández, A., & Pallás, V. (2019). Polyvalent detection of twelve viruses and four viroids affecting tomato by using a unique polyprobe. European Journal of Plant Pathology, 155, 361–368. https://doi.org/10.1007/s10658-019-01763-6Sandra, N., Tripathi, A., Dikshit, H. K., Mandal, B., & Jain, R. K. (2020). Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts. Virus Research, 280, 197903. https://doi.org/10.1016/J.VIRUSRES.2020.197903Sastry, K. S. (2013). 2013. Springer.Simmons, H. E., & Munkvold, G. P. (2014). Seed transmission in the Potyviridae. Global Perspectives on the Health of Seeds and Plant Propagation Material, 6, 3–15. https://doi.org/10.1007/978-94-017-9389-6_1/TABLES/1Singh, D., & Mathur, S. B. (2004). Histopathology of Seed-Borne Infections. Histopathology of Seed-Borne Infections. https://doi.org/10.1201/9781420038170Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y., et al. (2008). Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. TAG. Theoretical and Applied Genetics, 117(7), 1107–1118. https://doi.org/10.1007/S00122-008-0848-6Tomita, R., Sekine, K. T., Mizumoto, H., Sakamoto, M., Murai, J., Kiba, A., et al. (2011). Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Molecular Plant-Microbe interactions, 24(1), 108–117. https://doi.org/10.1094/MPMI-06-10-0127Tosic, M., Sutic, D., & Pesic, Z. (1980). Transmission of tobacco mosaic-virus through pepper (Capsicum-annuum-l.) seed. Phytopathologische Zeitschrift-Journal of Phytopathology, 97(1), 10–13.Van Der Want, J. P. H., & Dijkstra, J. (2006). A history of plant virology. Archives of Virology, 151(8), 1467–1498. https://doi.org/10.1007/S00705-006-0782-3Vélez-Olmedo, J. B., Fribourg, C. E., Melo, F. L., Nagata, T., de Oliveira, A. S., & Resende, R. O. (2021). Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. Journal of General Virology, 102(2), 001524. https://doi.org/10.1099/JGV.0.001524/CITE/REFWORKSYeku, O., & Frohman, M. A. (2011). Rapid amplification of cDNA ends (RACE). Methods in Molecular Biology, 703, 107–122. https://doi.org/10.1007/978-1-59745-248-9_8Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Alfenas-Zerbini, P., Dempsey, D. M., Dutilh, B. E., García, M. L., Curtis Hendrickson, R., Junglen, S., Krupovic, M., Kuhn, J. H., Lambert, A. J., Łobocka, M., Oksanen, H. M., Orton, R. J., Robertson, D. L., Rubino, L., … Zerbini, F. M. (2022). Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Archives of Virology. https://doi.org/10.1007/s00705-022-05516-
La reiteración de la biodesinfección controla la incidencia de la podredumbre radicular y del cuello del pimiento causada por Phytophthora y mejora la calidad del suelo
Phytophthora root and crown rot is a plant disease responsible for important economic losses in protected pepper crops. A greenhouse experiment was carried out in a temperate climate region (northern Spain) to assess the effects of repeated biodisinfection after three consecutive crop seasons with different organic amendments (a non-composted mixture of sheep manure and chicken litter, a semicomposted mixture of horse manure and chicken litter, Brassica carinata dehydrated pellets plus Sinapis alba fresh green manure) on disease incidence, crop yield and soil quality. Biodisinfection treatments were found to improve soil water properties through reduction in soil bulk density and increased water infiltration. Biodisinfested soils showed higher values of physicochemical and microbial properties than control (untreated) and plastic-mulched soils. In plots treated with the non-composted or semicomposted mixture, the observed higher levels of microbial activity were strongly related with an increase in soil microbial biomass. Brassica-Sinapis treatment had a weaker effect on soil properties than animal manure-based treatments. However, highest counts of total bacteria, actinomycetes and Pseudomonas spp. were found in Brassica-Sinapis-treated soils. It was concluded that repeated biodisinfection for the control of Phytophthora root and crown rot in protected pepper crops located in temperate climate regions can improve soil quality and suppressiveness, as well as allow for a reduction in the dose of organic amendment needed for biodisinfection. Among the studied organic amendments, the semicomposted amendment was the best option in terms of reduction in disease incidence.La podredumbre radicular y del cuello causada por Phytophthora es una enfermedad que genera importantes pérdidas económicas en cultivos de pimiento en invernadero. En una región de clima templado (norte de España) se realizó ensayo en invernadero para evaluar la reiteración de tratamientos de biodesinfección después de tres ciclos de cultivo consecutivos con diferentes enmiendas orgánicas (mezcla no-compostada de estiércol de oveja y gallinaza, mezcla semicompostada de estiércol de caballo y gallinaza, pellets deshidratados de Brassica carinata más Sinapis alba como abono verde fresco) sobre la incidencia de la enfermedad, la producción y la calidad del suelo. La biodesinfección mejoró las propiedades hídricas del suelo al reducir la densidad aparente y aumentar la infiltración. Los suelos biodesinfectados mostraron valores más altos en las propiedades físico-químicas y microbianas que los suelos control (no tratado) y acolchado con plástico. En las enmiendas no-compostada y semicompostada, los valores más altos de actividad microbiana estuvieron fuertemente relacionados con un aumento en la biomasa microbiana. La biodesinfección con Brassica-Sinapis tuvo menor efecto sobre las propiedades del suelo que con ambas enmiendas animales. No obstante, los recuentos de bacterias totales, actinomicetos y Pseudomonas spp. fueron más altos en los suelos tratados con Brassica-Sinapis. La biodesinfección reiterada para controlar la podredumbre radicular y del cuello causada por Phytophthora en cultivos de pimiento en invernadero en regiones de clima templado, puede mejorar la calidad del suelo y su supresividad, así como reducir dosis de enmienda requerida. La enmienda semicompostada fue la mejor en disminuir la incidencia de enfermedad