35 research outputs found

    The p53 Tumor Suppressor-Like Protein nvp63 Mediates Selective Germ Cell Death in the Sea Anemone Nematostella vectensis

    Get PDF
    Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates

    In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

    Get PDF
    Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    The effects of synaptic noise on measurements of evoked excitatory postsynaptic response amplitudes.

    No full text
    Spontaneously occurring synaptic events (synaptic noise) recorded intracellularly are usually assumed to be independent of evoked postsynaptic responses and to contaminate measures of postsynaptic response amplitude in a roughly Gaussian manner. Here we derive analytically the expected noise distribution for excitatory synaptic noise and investigate its effects on amplitude histograms. We propose that some fraction of this excitatory noise is initiated at the same release sites that contribute to the evoked synaptic event and develop an analytical model of the interaction between this fraction of the noise and the evoked postsynaptic response amplitude. Recording intracellularly with sharp microelectrodes in the in vitro hippocampal slice preparation, we find that excitatory synaptic noise accounts for up to 70% of the intracellular recording noise, when inhibition is blocked pharmacologically. Up to 20% of this noise shows a significant correlation with the evoked event amplitude, and the behavior of this component of the noise is consistent with a model which assumes that each release site experiences a refractory period of approximately 60 ms after release. In contrast with classical models of quantal variance, our models predict that excitatory synaptic noise can cause the apparent variance of successive peaks in an excitatory synaptic amplitude histogram to decrease from left to right, and in some cases to be less than the variance of the measured noise
    corecore