167 research outputs found
Classtalk: A Classroom Communication System for Active Learning
This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional
Limited Lifespan of Fragile Regions in Mammalian Evolution
An important question in genome evolution is whether there exist fragile
regions (rearrangement hotspots) where chromosomal rearrangements are happening
over and over again. Although nearly all recent studies supported the existence
of fragile regions in mammalian genomes, the most comprehensive phylogenomic
study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some
doubts about their existence. We demonstrate that fragile regions are subject
to a "birth and death" process, implying that fragility has limited
evolutionary lifespan. This finding implies that fragile regions migrate to
different locations in different mammals, explaining why there exist only a few
chromosomal breakpoints shared between different lineages. The birth and death
of fragile regions phenomenon reinforces the hypothesis that rearrangements are
promoted by matching segmental duplications and suggests putative locations of
the currently active fragile regions in the human genome
Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors
We study the ground state and low energy excitations of vortices pinned to
columnar defects in superconductors, taking into account the long--range
interaction between the fluxons. We consider the ``underfilled'' situation in
the Bose glass phase, where each flux line is attached to one of the defects,
while some pins remain unoccupied. By exploiting an analogy with disordered
semiconductors, we calculate the spatial configurations in the ground state, as
well as the distribution of pinning energies, using a zero--temperature Monte
Carlo algorithm minimizing the total energy with respect to all possible
one--vortex transfers. Intervortex repulsion leads to strong correlations
whenever the London penetration depth exceeds the fluxon spacing. A pronounced
peak appears in the static structure factor for low filling fractions . Interactions lead to a broad Coulomb gap in the distribution of
pinning energies near the chemical potential , separating
the occupied and empty pins. The vanishing of at leads to a
considerable reduction of variable--range hopping vortex transport by
correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact
[email protected]
Properties of the Bose glass phase in irradiated superconductors near the matching field
Structural and transport properties of interacting localized flux lines in
the Bose glass phase of irradiated superconductors are studied by means of
Monte Carlo simulations near the matching field B_Phi, where the densities of
vortices and columnar defects are equal. For a completely random columnar pin
distribution in the xy-plane transverse to the magnetic field, our results show
that the repulsive vortex interactions destroy the Mott insulator phase which
was predicted to occur at B = B_Phi. On the other hand, for ratios of the
penetration depth to average defect distance lambda/d <= 1, characteristic
remnants of the Mott insulator singularities remain visible in experimentally
accessible quantities as the magnetization, the bulk modulus, and the
magnetization relaxation, when B is varied near B_Phi. For spatially more
regular disorder, e.g., a nearly triangular defect distribution, we find that
the Mott insulator phase can survive up to considerably large interaction range
\lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include
The usability of description logics: understanding the cognitive difficulties presented by description logics
Description Logics have been extensively studied from the viewpoint of decidability and computational tractability. Less attention has been given to their usability and the cognitive difficulties they present, in particular for those who are not specialists in logic. This paper reports on a study into the difficulties associated with the most commonly used Description Logic features. Psychological theories are used to take account of these. Whilst most of the features presented no difficulty to participants, the comprehension of some was affected by commonly occurring misconceptions. The paper proposes explanations and remedies for some of these difficulties. In addition, the time to confirm stated inferences was found to depend both on the maximum complexity of the relations involved and the number of steps in the argument
Evaluating the usability of a visual feature modeling notation
International audienceFeature modeling is a popular Software Product Line Engineering (SPLE) technique used to describe variability in a product family. A usable feature modeling tool environment should enable SPLE practitioners to produce good quality models, in particular, models that effectively communicate modeled information. FAMILIAR is a text-based environment for manipulating and composing Feature Models (FMs). In this paper we present extensions we made to FAMILIAR to enhance its usability. The extensions include a visualization of FMs, or more precisely , a feature diagram rendering mechanism that supports the use of a combination of text and graphics to describe FMs, their configurations, and the results of FM analyses. We also present the results of a preliminary evaluation of the environment's usability. The evaluation involves comparing the use of the extended environment with the previous text-based console-driven version. The preliminary experiment provides some evidence that use of the new environment results in increased cognitive effectiveness of novice users and improved quality of new FMs
Granularity-induced gapless superconductivity in NbN films: evidence of thermal phase fluctuations
Using a single coil mutual inductance technique, we measure the low
temperature dependence of the magnetic penetration depth in superconducting NbN
films prepared with similar critical temperatures around 16 K but with
different microstructures. Only (100) epitaxial and weakly granular (100)
textured films display the characteristic exponential dependence of
conventional BCS s-wave superconductors. More granular (111) textured films
exhibit a linear dependence, indicating a gapless state in spite of the s-wave
gap. This result is quantitatively explained by a model of thermal phase
fluctuations favored by the granular structure.Comment: 10 pages, 4 figures, to appear in Phys. Rev.
Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects
We study muon-spin rotation (muSR) spectra in the mixed phase of highly
anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta
(BSCCO), by modeling the fluid and solid phases of pancake vortices using
liquid-state and density functional methods. The role of thermal fluctuations
in causing motional narrowing of muSR lineshapes is quantified in terms of a
first-principles theory of the flux-lattice melting transition. The effects of
random point pinning are investigated using a replica treatment of liquid state
correlations and a replicated density functional theory. Our results indicate
that motional narrowing in the pure system, although substantial, cannot
account for the remarkably small linewidths obtained experimentally at
relatively high fields and low temperatures. We find that satisfactory
agreement with the muSR data for BSCCO in this regime can be obtained through
the ansatz that this ``phase'' is characterized by frozen short-range
positional correlations reflecting the structure of the liquid just above the
melting transition. This proposal is consistent with recent suggestions of a
``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of
pinning disorder. Our results for the high-temperature liquid phase indicate
that measurable linewidths may be obtained in this phase as a consequence of
density inhomogeneities induced by the pinning disorder. The results presented
here comprise a unified, first-principles theoretical treatment of muSR spectra
in highly anisotropic layered superconductors in terms of a controlled set of
approximations.Comment: 50 pages Latex file, including 10 postscript figure
Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 LaCuO and LaSrCuO
This paper reports muon spin relaxation (MuSR) measurements of two single
crystals of the title high-Tc cuprate systems where static incommensurate
magnetism and superconductivity coexist. By zero-field MuSR measurements and
subsequent analyses with simulations, we show that (1) the maximum ordered Cu
moment size (0.36 Bohr magneton) and local spin structure are identical to
those in prototypical stripe spin systems with the 1/8 hole concentration; (2)
the static magnetism is confined to less than a half of the volume of the
sample, and (3) regions with static magnetism form nano-scale islands with the
size comparable to the in-plane superconducting coherence length. By
transverse-field MuSR measurements, we show that Tc of these systems is related
to the superfluid density, in the same way as observed in cuprate systems
without static magnetism. We discuss a heuristic model involving percolation of
these nanoscale islands with static magnetism as a possible picture to
reconcile heterogeneity found by the present MuSR study and long-range spin
correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail:
[email protected]
A Qualitative Comparison of Approaches Supporting Business Process Variability
The increasing adoption of process-aware information systems, together with the reuse of process knowledge, has led to the emergence of process model repositories with large process families, i.e., collections of related process model variants. For managing such related model collections two types of approaches exist. While behavioral approaches take supersets of variants and derive a process variant by hiding and blocking process elements, structural approaches take a base process model as input and derive a process variant by applying a set of change operations to it. However, at the current stage no framework for assessing these approaches exists and it is not yet clear which approach should be better used and under which circumstances. Therefore, to give first insights about this issue, this work compares both approaches in terms of understandability of the produced process model artifacts, which is fundamental for the management of process families and the reuse of their contained process fragments. In addition, the comparison can serve as theoretical basis for conducting experiments as well as for fostering the development of tools managing business process variability
- …