9,375 research outputs found

    Kondo Breakdown as a Selective Mott Transition in the Anderson Lattice

    Full text link
    We show within the slave boson technique, that the Anderson lattice model exhibits a Kondo breakdown quantum critical point (KB-QCP) where the hybridization goes to zero at zero temper- ature. At this fixed point, the f-electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multi-scale QCP in the An- derson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.Comment: 4 pages, 2 figures, version with new figures and typos correcte

    Attractive Fermi gases with unequal spin populations in highly elongated traps

    Full text link
    We investigate two-component attractive Fermi gases with imbalanced spin populations in trapped one dimensional configurations. The ground state properties are determined within local density approximation, starting from the exact Bethe-ansatz equations for the homogeneous case. We predict that the atoms are distributed according to a two-shell structure: a partially polarized phase in the center of the trap and either a fully paired or a fully polarized phase in the wings. The partially polarized core is expected to be a superfluid of the FFLO type. The size of the cloud as well as the critical spin polarization needed to suppress the fully paired shell, are calculated as a function of the coupling strength.Comment: Final accepted versio

    Phase diagram of asymmetric Fermi gas across Feshbach resonance

    Full text link
    We study the phase diagram of the dilute two-component Fermi gas at zero temperature as a function of the polarization and coupling strength. We map out the detailed phase separations between superfluid and normal states near the Feshbach resonance. We show that there are three different coexistence of superfluid and normal phases corresponding to phase separated states between: (I) the partially polarized superfluid and the fully polarized normal phases, (II) the unpolarized superfluid and the fully polarized normal phases and (III) the unpolarized superfluid and the partially polarized normal phases from strong-coupling BEC side to weak-coupling BCS side. For pairing between two species, we found this phase separation regime gets wider and moves toward the BEC side for the majority species are heavier but shifts to BCS side and becomes narrow if they are lighter.Comment: 4 pages, 3 figures. Submitted to LT25 on June 200

    Pairing of a trapped resonantly-interacting fermion mixture with unequal spin populations

    Full text link
    We consider the phase separation of a trapped atomic mixture of fermions with unequal spin populations near a Feshbach resonance. In particular, we determine the density profile of the two spin states and compare with the recent experiments of Partridge et al. (cond-mat/0511752). Overall we find quite good agreement. We identify the remaining discrepancies and pose them as open problems.Comment: 4 figures, 4+ pages, revtex

    The low temperature Fulde-Ferrell-Larkin-Ovchinnikov phases in 3 dimensions

    Full text link
    We consider the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases in three dimensions at low temperature. We introduce a new method to handle the quasiclassical equations for superconductors with space dependent order parameter, which makes use of a Fourier expansion. This allows us to show that, at T=0, an order parameter given by the linear combination of three cosines oscillating in orthogonal directions is preferred over the standard single cosine solution. The transition from the normal state to this phase is first order, and quite generally the transition below the tricritical point to the FFLO phases is always first order.Comment: 4 pages, revtex, 1 figur

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Vortex Viscosity in Magnetic Superconductors Due to Radiation of Spin Waves

    Full text link
    In type-II superconductors that contain a lattice of magnetic moments, vortices polarize the magnetic system inducing additional contributions to the vortex mass, vortex viscosity, and vortex-vortex interaction. Extra magnetic viscosity is caused by radiation of spin waves by a moving vortex. Like in the case of Cherenkov radiation, this effect has a characteristic threshold behavior and the resulting vortex viscosity may be comparable to the well-known Bardeen-Stephen contribution. The threshold behavior leads to an anomaly in the current-voltage characteristics, and a drop in dissipation for a current interval that is determined by the magnetic excitation spectrum.Comment: 4 pages, 1 figur
    • …
    corecore