109 research outputs found

    Locating sensors with fuzzy logic algorithms

    Get PDF
    In a system formed by hundreds of sensors deployed in a huge area it is important to know the position where every sensor is. This information can be obtained using several methods. However, if the number of sensors is high and the deployment is based on ad-hoc manner, some auto-locating techniques must be implemented. In this paper we describe a novel algorithm based on fuzzy logic with the objective of estimating the location of sensors according to the knowledge of the position of some reference nodes. This algorithm, called LIS (Localization based on Intelligent Sensors) is executed distributively along a wireless sensor network formed by hundreds of nodes, covering a huge area. The evaluation of LIS is led by simulation tests. The result obtained shows that LIS is a promising method that can easily solve the problem of knowing where the sensors are located.Junta de Andalucía P07-TIC-0247

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Automatic Lesser Kestrel’s Gender Identification using Video Processing

    Get PDF
    Traditionally, animal surveillance is a common task for biologists. However, this task is often accompanied by the inspection of huge amounts of video. In this sense, this paper proposes an automatic video processing algorithm to identify the gender of a kestrel species. It is based on optical flow and texture analysis. This algorithm makes it possible to identify the important information and therefore, minimizing the analysis time for biologists. Finally, to validate this algorithm, it has been tested against a set of videos, getting good classification results.Junta de Andalucía P10-TIC-570

    mTOSSIM: A simulator that estimates battery lifetime in wireless sensor networks

    Get PDF
    Knowledge of the battery lifetime of the wireless sensor network is important for many situations, such as in evaluation of the location of nodes or the estimation of the connectivity, along time, between devices. However, experimental evaluation is a very time-consuming task. It depends on many factors, such as the use of the radio transceiver or the distance between nodes. Simulations reduce considerably this time. They allow the evaluation of the network behavior before its deployment. This article presents a simulation tool which helps developers to obtain information about battery state. This simulator extends the well-known TOSSIM simulator. Therefore it is possible to evaluate TinyOS applications using an accurate model of the battery consumption and its relation to the radio power transmission. Although an specific indoor scenario is used in testing of simulation, the simulator is not limited to this environment. It is possible to work in outdoor scenarios too. Experimental results validate the proposed model.Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    A Wildfire Prediction Based on Fuzzy Inference System for Wireless Sensor Networks

    Get PDF
    The study of forest fires has been traditionally considered as an important application due to the inherent danger that this entails. This phenomenon takes place in hostile regions of difficult access and large areas. Introduction of new technologies such as Wireless Sensor Networks (WSNs) has allowed us to monitor such areas. In this paper, an intelligent system for fire prediction based on wireless sensor networks is presented. This system obtains the probability of fire and fire behavior in a particular area. This information allows firefighters to obtain escape paths and determine strategies to fight the fire. A firefighter can access this information with a portable device on every node of the network. The system has been evaluated by simulation analysis and its implementation is being done in a real environment.Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    Monitoring and Fault Location Sensor Network for Underground Distribution Lines

    Get PDF
    One of the fundamental tasks of electric distribution utilities is guaranteeing a continuous supply of electricity to their customers. The primary distribution network is a critical part of these facilities because a fault in it could affect thousands of customers. However, the complexity of this network has been increased with the irruption of distributed generation, typical in a Smart Grid and which has significantly complicated some of the analyses, making it impossible to apply traditional techniques. This problem is intensified in underground lines where access is limited. As a possible solution, this paper proposes to make a deployment of a distributed sensor network along the power lines. This network proposes taking advantage of its distributed character to support new approaches of these analyses. In this sense, this paper describes the aquiculture of the proposed network (adapted to the power grid) based on nodes that use power line communication and energy harvesting techniques. In this sense, it also describes the implementation of a real prototype that has been used in some experiments to validate this technological adaptation. Additionally, beyond a simple use for monitoring, this paper also proposes the use of this approach to solve two typical distribution system operator problems, such as: fault location and failure forecasting in power cables.Ministerio de Economía y Competitividad, Government of Spain project Sistema Inteligente Inalámbrico para Análisis y Monitorización de Líneas de Tensión Subterráneas en Smart Grids (SIIAM) TEC2013-40767-RMinisterio de Educación, Cultura y Deporte, Government of Spain, for the funding of the scholarship Formación de Profesorado Universitario 2016 (FPU 2016

    Implementing a distributed WSN based on IPv6 for ambient monitoring

    Get PDF
    Traditionally,Wireless SensorNetworks (WSNs) are used for monitoring an extensive area. In these networks, a centralized server is usually used to collect and store the sensor information.However, new distributed protocols allow connections directly to theWSN nodes without the need of a centralized server.Moreover, these systems are able to establish communications among heterogeneous networks.The new protocols strategy is focused on considering several WSNs as a unique distributed one.This way, a user of the system is able to analyze a process under study as a whole instead of considering it as a set of different subsystems. This is the case in the evaluation of migratory waterbirds’ environment. In this case, it is usual to deploy severalWSNs in different breeding areas. They are all interconnected and they measure different environmental parameters. However, this improvement in the data access flexibility may result in a loss of network performance and an increase in network power consumption. Focused on this problem, this paper evaluates different communication protocols: distributed and centralized, in order to determine the best trade-off for environmental monitoring in different migratory areas of waterbirds

    Energy efficient wireless sensor network communications based on computational intelligent data fusion for environmental monitoring

    Get PDF
    The study presents a novel computational intelligence algorithm designed to optimise energy consumption in an environmental monitoring process: specifically, water level measurements in flooded areas. This algorithm aims to obtain a tradeoff between accuracy and power consumption. The implementation constitutes a data aggregation and fusion in itself. A harsh environment can make the direct measurement of flood levels a difficult task. This study proposes a flood level estimation, inferred through the measurement of other common environmental variables. The benefit of this algorithm is tested both with simulations and real experiments conducted in Donñana, a national park in southern Spain where flood level measurements have traditionally been done manually.Junta de Andalucía P07-TIC-0247

    Localization method for low-power wireless sensor networks

    Get PDF
    Context awareness is an important issue in ambient intelligence to anticipate the desire of the user and, in consequence, to adapt the system. In context awareness, localization is very important to enable a responsive environment for the users. Focusing on this issue, this paper presents a localization system based on the use of Wireless Sensor Networks devices. In contrast to a traditional RFID, these devices offer the possibility of a collaborative sensing and processing of environmental information. The proposed system is a range-free localization algorithm that uses fuzzy inference to process the RSSI measurement and to estimate the position of mobile devices. The main goal of the algorithm is to reduce the power consumption and the cost of the devices, especially for the mobiles ones, maintaining the accuracy of the inferred position

    Localization method for low power consumption systems

    Get PDF
    Locating nodes is a fundamental problem in wireless networks with hundreds of devices deployed in a wide area. This is especially relevant for mobile nodes. Wireless sensor nodes are usually powered by small batteries, solar panels or piezoelectric generators, so that, and consequently, power consumption is the main constraint to deal with. But classic localization techniques do not consider the problem of energy consumption as a key point. This paper presents a novel low power and range-free localization technique based on distributed fuzzy logic and cooperative processing among a set of fixed nodes and its neighbours. This feature permits better accuracy with less power consumption than most relevant localization techniquesJunta de Andalucía P07-TIC-0247
    corecore