133 research outputs found
Recommended from our members
SEIS: Insight's Seismic Experiment for Internal Structure of Mars.
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users
Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012–20
DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: “Biodiversity and Ecosystem Services Science for a Sustainable Planet”. This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network — GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services — IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011–2020). This article presents the vision and its core scientific challenges.Fil: Larigauderie, Anne. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Prieur Richard, Anne Helene. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Mace, Georgina. Imperial College London. Center for Population Biology; Reino UnidoFil: Londsdale, Mark. CSIRO Ecosystem Sciences; AustraliaFil: Mooney, Harold A.. Stanford University. Department of Biological Sciences; Estados UnidosFil: Brussaard, Lijbert. Wageningen University, Soil Quality Department; Países BajosFil: Cooper, David. Secretariat of the Convention on Biological Diversity; CanadáFil: Wolfgang, Cramer. Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale; FranciaFil: Daszak, Peter. EcoHealth Alliance. Wildlife Trust; Estados UnidosFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Duraiappah, Anantha. International Human Dimensions Programme; AlemaniaFil: Elmqvist, Thomas. University of Stockholm. Department of Systems Ecology and Stockholm Resilience Center; SueciaFil: Faith, Daniel. The Australian Museum; AustraliaFil: Jackson, Louise. University of California; Estados UnidosFil: Krug, Cornelia. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Leadley, Paul. Université Paris. Laboratoire Ecologie Systématique Evolution, Ecologie des Populations et Communautés; FranciaFil: Le Prestre, Philippe. Laval University; CanadáFil: Matsuda, Hiroyuki. Yokohama National University; JapónFil: Palmer, Margaret. University of Maryland; Estados UnidosFil: Perrings, Charles. Arizona State University; Estados UnidosFil: Pulleman, Mirjam. Wageningen University; Países BajosFil: Reyers, Belinda. Natural Resources and Environment; SudáfricaFil: Rosa, Eugene A.. Washington State University; Estados UnidosFil: Scholes, Robert J.. Natural Resources and Environment; SudáfricaFil: Spehn, Eva. Universidad de Basilea; SuizaFil: Turner II, B. L.. Arizona State University; Estados UnidosFil: Yahara, Tetsukazu. Kyushu University; Japó
The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps
Biodiversity and the services ecosystems provide have built the foundation of human civilization and provide for the welfare of people. With the increase of the human population it has become clearer than ever that the human exploitation of our natural resources leads to detrimental interactions between ecological and sociological systems. Only concerted and global actions will be able to reverse ongoing biodiversity loss. In response to these needs, the United Nations agreed the establishment of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) in 2010. Here, we report on the progress IPBES has made since its inception, and suggest how the scientific community can engage with this important science-policy interfac
Identification of female sex pheromone for monitoring the barred tooth striped moth, trichopteryx polycommata, a priority conservation species
Pheromone-baited traps can be excellent tools for sensitive detection of insects of conservation concern. Here, identification of the sex pheromone of Trichopteryx polycommata (Denis & Schiffermüller, 1775), an under-recorded UK priority species, is reported. In analyses of extracts of the pheromone glands of female T. polycommata by gas chromatography coupled to electroantennographic recording from the antenna of a male moth, a single active component was detected. This was identified as (Z,Z)-6,9-nonadecadiene (Z,Z6,9-19:H) by comparison of its mass spectrum and retention times with those of the synthetic standard. In a pilot field trial in Kent, UK, T. polycommata males were caught in pheromone traps baited with lures loaded with 1 mg and 2 mg (Z,Z)-6,9-19:H. Optimum lure loading was identified in a further five trials in Kent, Sussex and Lancashire where lures of 0, 0.001, 0.01, 0.1, 1, 2, 5 and 10 mg loadings were tested. Traps baited with 1 to 10 mg of ZZ6,9-19:H caught significantly more T. polycommata than traps baited with 0 mg and 0.001 mg. In a pilot survey of T. polycommata using pheromone lures around Morecambe Bay, UK, T. polycommata males were captured at 122 new sites within the three counties where trials took place, demonstrating the potential of pheromone monitoring to increase knowledge of abundance, distribution and ecology of this elusive species
Perilipin 2 (PLIN2)-Deficiency Does Not Increase Cholesterol-Induced Toxicity in Macrophages
Interventions on macrophages/foam cells to redirect intracellular cholesterol towards efflux pathways could become a very valuable addition to our therapeutic arsenal against atherosclerosis. However, certain manipulations of the cholesteryl ester cycle, such as the inhibition of ACAT1, an ER-resident enzyme that re-esterifies cholesterol, are not well tolerated. Previously we showed that targeting perilipin-2 (PLIN2), a major lipid droplet (LD)-associated protein in macrophages, prevents foam cell formation and protects against atherosclerosis. Here we have assessed the tolerance of PLIN2-deficient bone marrow derived macrophages (BMM) to several lipid loading conditions similar to the found during atherosclerosis development, including exposure to modified low-density lipoprotein (mLDL) and 7-ketocholesterol (7-KC), a free cholesterol (FC) metabolite, in media with or without cholesterol acceptors. BMM isolated from mice that do or do not express PLIN2 were tested for apoptosis (TUNEL and cleaved caspase-3), ER stress (CHOP induction and XBP-1 splicing), and inflammation (TNF-α and IL-6 mRNA levels). Like in other cell types, PLIN2 deficiency impairs LD buildup in BMM. However, while most stress parameters were elevated in macrophages under ACAT inhibition and 7-KC loading, PLIN2 inactivation was well tolerated. The data support the safety of targeting PLIN2 to prevent foam cell formation and atherosclerosis
Membership nominations in international scientific assessments
International scientific assessments are transnational knowledge-based expert networks with a mandate to advise policymakers. A well-known example is the Millennium Ecosystem Assessment (MA), which synthesized research on ecosystem services between 2001 and 2005, utilizing the knowledge of 1,360 expert members. Little, however, is known about the membership composition and the driving forces behind membership nominations in the MA and similar organizations. Here we introduce a survey data set on recruitment in the MA and analyse nomination patterns among experts as a complex network. The results indicate that membership recruitment was governed by prior contacts in other transnational elite organizations and a range of other factors related to personal affinity. Network analysis demonstrates how some core individuals were particularly influential in shaping the overall membership composition of the group. These findings add to recently noted concerns about the lack of diversity of views represented in international scientific assessments
The response of Plantago major ssp pleiosperma to elevated CO2 is modulated by the formation of secondary shoots
The effect of elevated CO2 on the relative growth rate (RGR) of Plantago major ssp. pleiosperma was studied during the vegetative stage, in relation to plant development, by growing plants at 350 mu l l(-1) or at 700 mu l l(-1) CO2 in non-limiting nutrient solution with nitrate. To minimize interference by the accumulation of non-structural carbohydrates in the interpretation of results, RGR was expressed on a f. wt basis (RGR(FW)), as were all plant weight ratios. Stimulation of the RGR(FW) Of the whole plant by elevated CO2 was transient, and did not last longer than 8 d. At the same time a transient increase in root weight ratio (RWR) was observed. In order to investigate whether the transient effect of elevated CO2 on RGR(FW) was size-dependent, the data were plotted versus total f. wt (log(e) transformed). The transient period of stimulation of RGR(FW) and of RWR by elevated CO2 was still found, but in both CO2 treatments RGR(FW) decreased after a certain plant size had been reached. This size coincided with the stage at which secondary shoots started to develop, and was reached earlier in plants grown at elevated CO2. The RGR of these secondary shoots (RGR(see)) was Still increased when the period of whole plant stimulation of RGR(FW) had ended, indicating that the development of these new sinks took priority over a continuation of the stimulation of RWR. It is hypothesized that in this Plantago subspecies the response of the RGR(FW) of the whole plants to elevated CO2 is modulated by the formation of secondary shoots. Apparently, partitioning of the extra soluble carbohydrates at elevated CO2 to this tissue takes precedence over partitioning to the roots. resulting in a cessation of stimulation of plant RGR(FW) by elevated CO2.info:eu-repo/semantics/publishedVersio
The IPBES Conceptual Framework - connecting nature and people
The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework. This conceptual and analytical tool, presented here in detail, will underpin all IPBES functions and provide structure and comparability to the syntheses that IPBES will produce at different spatial scales, on different themes, and in different regions. Salient innovative aspects of the IPBES Conceptual Framework are its transparent and participatory construction process and its explicit consideration of diverse scientific disciplines, stakeholders, and knowledge systems, including indigenous and local knowledge. Because the focus on co-construction of integrative knowledge is shared by an increasing number of initiatives worldwide, this framework should be useful beyond IPBES, for the wider research and knowledge-policy communities working on the links between nature and people, such as natural, social and engineering scientists, policy-makers at different levels, and decision-makers in different sectors of society
Left ventricular function during porcine-resuscitated septic shock with pre-existing atherosclerosis
- …