19 research outputs found

    Comparative evaluation of the My5-FU™ immunoassay and LC-MS/MS in monitoring the 5-fluorouracil plasma levels in cancer patients

    Get PDF
    BACKGROUND: Chemotherapies of solid tumors commonly include 5-fluorouracil (5-FU). With standard doses of 5-FU, substantial inter-patient variability has been observed in exposure levels and treatment response. Recently, improved outcomes in colorectal cancer patients due to pharmacokinetically guided 5-FU dosing were reported. We aimed at establishing a rapid and sensitive method for monitoring 5-FU plasma levels in cancer patients in our routine clinical practice. METHODS: Performance of the Saladax My5-FU™ immunoassay was evaluated on the Roche Cobas® Integra 800 analyzer. Subsequently, 5-FU concentrations of 247 clinical plasma samples obtained with this assay were compared to the results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and other commonly used clinical analyzers (Olympus AU400, Roche Cobas c6000, and Thermo Fisher CDx90). RESULTS: The My-FU assay was successfully validated on the Cobas Integra 800 analyzer in terms of linearity, precision, accuracy, recovery, interference, sample carryover, and dilution integrity. Method comparison between the Cobas Integra 800 and LC-MS/MS revealed a proportional bias of 7% towards higher values measured with the My5-FU assay. However, when the Cobas Integra 800 was compared to three other clinical analyzers in addition to LC-MS/MS including 50 samples representing the typical clinical range of 5-FU plasma concentrations, only a small proportional bias (≤1.6%) and a constant bias below the limit of detection was observed. CONCLUSIONS: The My5-FU assay demonstrated robust and highly comparable performance on different analyzers. Therefore, the assay is suitable for monitoring 5-FU plasma levels in routine clinical practice and may contribute to improved efficacy and safety of commonly used 5-FU-based chemotherapies

    Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration.

    Get PDF
    Age-related macular degeneration (AMD) is the most frequent cause of blindness in the elderly. There is evidence that nutrition, inflammation and genetic risk factors play an important role in the development of AMD. Recent studies suggest that the composition of the intestinal microbiome is associated with metabolic diseases through modulation of inflammation and host metabolism. To investigate whether compositional and functional alterations of the intestinal microbiome are associated with AMD, we sequenced the gut metagenomes of patients with AMD and controls. The genera Anaerotruncus and Oscillibacter as well as Ruminococcus torques and Eubacterium ventriosum were relatively enriched in patients with AMD, whereas Bacteroides eggerthii was enriched in controls. Patient's intestinal microbiomes were enriched in genes of the L-alanine fermentation, glutamate degradation and arginine biosynthesis pathways and decreased in genes of the fatty acid elongation pathway. These findings suggest that modifications in the intestinal microbiome are associated with AMD, inferring that this common sight threatening disease may be targeted by microbiome-altering interventions

    Divergence along a steep ecological gradient in lake whitefish (Coregonus sp.)

    No full text
    To understand mechanisms structuring diversity in young adaptive radiations, quantitative and unbiased information about genetic and phenotypic diversity is much needed. Here, we present the first in-depth investigation of whitefish diversity in a Swiss lake, with continuous spawning habitat sampling in both time and space. Our results show a clear cline like pattern in genetics and morphology of populations sampled along an ecological depth gradient in Lake Neuchâtel. Divergent natural selection appears to be involved in shaping this cline given that trait specific P(ST)-values are significantly higher than F(ST)-values when comparing populations caught at different depths. These differences also tend to increase with increasing differences in depth, indicating adaptive divergence along a depth gradient, which persists despite considerable gene flow between adjacent demes. It however remains unclear, whether the observed pattern is a result of currently stable selection-gene flow balance, incipient speciation, or reverse speciation due to anthropogenic habitat alteration causing two formerly divergent species to collapse into a single gene pool

    Metabolomics by UHPLC-MS: benefits provided by complementary use of Q-TOF and QQQ for pathway profiling.

    No full text
    INTRODUCTION Non-targeted metabolic profiling using high-resolution mass spectrometry (HRMS) is a standard approach for pathway identification despite technical limitations. OBJECTIVES To assess the performance of combining targeted quadrupole (QQQ) analysis with HRMS for in-depth pathway profiling. METHODS Serum of exercising patients with type 1 diabetes (T1D) was profiled using targeted and non-targeted assays. RESULTS Non-targeted analysis yielded a broad unbiased metabolic profile, targeted analysis increased coverage of purine metabolism (twofold) and TCA cycle (three metabolites). CONCLUSION Our screening strategy combined the benefits of the unbiased full-scan HRMS acquisition with the deeper insight into specific pathways by large-scale QQQ analysis

    Polymorphisms in MIR27A Associated with Early-Onset Toxicity in Fluoropyrimidine-Based Chemotherapy

    No full text
    PURPOSE The microRNA miR-27a was recently shown to directly regulate dihydropyrimidine dehydrogenase (DPD), the key enzyme in fluoropyrimidine catabolism. A common polymorphism (rs895819A>G) in the miR-27a genomic region (MIR27A) was associated with reduced DPD activity in healthy volunteers, but the clinical relevance of this effect is still unknown. Here, we assessed the association of MIR27A germline variants with early-onset fluoropyrimidine toxicity. EXPERIMENTAL DESIGN MIR27A was sequenced in 514 patients with cancer receiving fluoropyrimidine-based chemotherapy. Associations of MIR27A polymorphisms with early-onset (cycles 1-2) fluoropyrimidine toxicity were assessed in the context of known risk variants in the DPD gene (DPYD) and additional covariates associated with toxicity. RESULTS The association of rs895819A>G with early-onset fluoropyrimidine toxicity was strongly dependent on DPYD risk variant carrier status (Pinteraction = 0.0025). In patients carrying DPYD risk variants, rs895819G was associated with a strongly increased toxicity risk [OR, 7.6; 95% confidence interval (CI), 1.7-34.7; P = 0.0085]. Overall, 71% (12/17) of patients who carried both rs895819G and a DPYD risk variant experienced severe toxicity. In patients without DPYD risk variants, rs895819G was associated with a modest decrease in toxicity risk (OR, 0.62; 95% CI, 0.43-0.9; P = 0.012). CONCLUSIONS These results indicate that miR-27a and rs895819A>G may be clinically relevant for further toxicity risk stratification in carriers of DPYD risk variants. Our data suggest that direct suppression of DPD by miR-27a is primarily relevant in the context of fluoropyrimidine toxicity in patients with reduced DPD activity. However, miR-27a regulation of additional targets may outweigh its effect on DPD in patients without DPYD risk variants
    corecore