2 research outputs found

    Inhibition of hepatitis B virus replication using synthetic antiviral RNA interference activators

    Get PDF
    A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg 2016Chronic liver infection by hepatitis B virus (HBV) may lead to devastating clinical conditions that include hepatocellular carcinoma and cirrhosis. Approved antiHBV drugs do not completely eradicate the infection, leading to continued viral persistence in infected individuals. Inhibition of HBV replication using synthetic activators of RNA interference (RNAi) may provide a feasible strategy of developing superior antiviral drugs. The aim of this study was to evaluate the therapeutic utility of novel 2’-O-guanidinopropyl (GP) modified synthetic small interfering RNAs (siRNAs) to counter HBV replication in cultured mammalian cells and mice. Initially, single GP moieties were placed at different nucleotide positions of the guide strand of a potent antiHBV siRNA. Some GP-modified siRNAs enhanced antiHBV activity in vitro following transient transfection of Human hepatoma 7 (Huh7) cells with siRNAs and pCH-9/3091, a replication competent HBV target plasmid. These siRNAs inhibited the secretion of Hepatitis B surface antigen (HBsAg) by up to 95% in Huh7 cells. The level of knockdown exhibited by some modified siRNAs was statistically significant relative to that displayed by unmodified siRNA3 which achieved HBsAg silencing of 73%. Additionally, modified siRNAs were also capable of reducing RNA containing the X sequence in vitro by 88-93%. Impressively, some of these knockdown levels were statistically significant when compared to unmodified siRNA3, which achieved HBx knockdown of 83%. Quantitation of interferon (IFN) response genes by reverse transcription quantitative polymerase chain reaction (RTqPCR) and evaluation of cell viability by 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay revealed no evidence of innate immune stimulation or cytotoxicity in cultured cells, respectively. Modified siRNAs also displayed moderate stability in 80% foetal calf serum (FCS). Target specificity was markedly improved by GP-modified siRNAs, especially those with seed modifications (comprising nucleotide position 2 to 8 from the 5’ end of the guide strand). The siRNA-mediated mRNA cleavage product was detected from transfected cells using 5’ Rapid Amplification of cDNA ends (5’ RACE). In the hydrodynamic mouse model, co-injection of GP-modified siRNAs and HBV plasmid vector led to HBsAg suppression of approximately 80-92% at day 3 and 77-96% at day 5 post-administration. The HBV knockdown levels observed at day 3 were statistically significant when compared to those displayed by unmodified siRNA3 which achieved HBsAg silencing of 58% during the same time frame. Furthermore, both sets of siRNAs also suppressed the number of circulating viral particle equivalents (VPEs) by 88- 90% at day 3 post-injection. HBV silencing efficacy of 70-75% and 65% was achieved by modified and unmodified siRNAs, respectively at day 5 post-administration. Finally, antiHBV efficacy of GP-modified siRNAs was tested in HBV transgenic mice following delivery of these RNAi effectors using cationic polyglutamate (PG) adjuvant liposomes. Both groups of antiHBV siRNAs effected HBsAg knockdown that ranged from 70-86% at day 3 to 7 post-administration as siRNA lipoplexes in HBV transgenic mice. In contrast to the unmodified siRNA3, GP-containing siRNAs achieved durable HBsAg silencing of 70% at day 14 post-administration, while the unmodified siRNA3 displayed a shorter duration of activity. As with HBsAg data, the GP-modified siRNAs also displayed silencing efficacy that was similar to the unmodified siRNA, reducing the number of circulating VPEs by 95% from day 3 to 7 post-injection. However, the unmodified siRNA3 lost efficacy by day 14 post-administration, while the GP-modified siRNAs displayed prolonged suppression by reducing the number of circulating VPEs by 75% during the same time interval. Intrahepatic RNA levels were also assessed in transgenic mice, in which GP3 siRNA3 significantly suppressed surface and core RNA levels by 40 and 42%, respectively at day 18 post-injection. The unmodified siRNA3 suppressed surface RNA levels by 20% and core RNA levels by 25% at day 21 post-administration. Furthermore, GP4 siRNA3 silenced both surface and core RNA levels by 42% during the same time period. Additionally, intrahepatic RNA quantitation revealed no induction of IFN response genes by either unmodified or GP-modified siRNAs. In contrast to mice that had received GP-modified siRNAs, significant induction of proinflammatory cytokine release was observed in mice treated with unmodified siRNAs. The siRNA-mediated mRNA cleavage product was also detected from liver samples following 5’ RACE analysis. Neither GPmodified nor unmodified siRNAs significantly induced toxicity in injected mice. Collectively, our data provide evidence that utilisation of GP-modified siRNAs and an efficient hepatotropic non-viral delivery system may be used as a strategy to counter chronic HBV infection.MT201

    Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial

    No full text
    Background: Additional safe and efficacious vaccines are needed to control the COVID-19 pandemic. We aimed to analyse the efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate. Methods: HERALD is a randomised, observer-blinded, placebo-controlled, phase 2b/3 clinical trial conducted in 47 centres in ten countries in Europe and Latin America. By use of an interactive web response system and stratification by country and age group (18–60 years and ≥61 years), adults with no history of virologically confirmed COVID-19 were randomly assigned (1:1) to receive intramuscularly either two 0·6 mL doses of CVnCoV containing 12 μg of mRNA or two 0·6 mL doses of 0·9% NaCl (placebo) on days 1 and 29. The primary efficacy endpoint was the occurrence of a first episode of virologically confirmed symptomatic COVID-19 of any severity and caused by any strain from 15 days after the second dose. For the primary endpoint, the trial was considered successful if the lower limit of the CI was greater than 30%. Key secondary endpoints were the occurrence of a first episode of virologically confirmed moderate-to-severe COVID-19, severe COVID-19, and COVID-19 of any severity by age group. Primary safety outcomes were solicited local and systemic adverse events within 7 days after each dose and unsolicited adverse events within 28 days after each dose in phase 2b participants, and serious adverse events and adverse events of special interest up to 1 year after the second dose in phase 2b and phase 3 participants. Here, we report data up to June 18, 2021. The study is registered at ClinicalTrials.gov, NCT04652102, and EudraCT, 2020–003998–22, and is ongoing. Findings: Between Dec 11, 2020, and April 12, 2021, 39 680 participants were enrolled and randomly assigned to receive either CVnCoV (n=19 846) or placebo (n=19 834), of whom 19 783 received at least one dose of CVnCoV and 19 746 received at least one dose of placebo. After a mean observation period of 48·2 days (SE 0·2), 83 cases of COVID-19 occurred in the CVnCoV group (n=12 851) in 1735·29 person-years and 145 cases occurred in the placebo group (n=12 211) in 1569·87 person-years, resulting in an overall vaccine efficacy against symptomatic COVID-19 of 48·2% (95·826% CI 31·0–61·4; p=0·016). Vaccine efficacy against moderate-to-severe COVID-19 was 70·7% (95% CI 42·5–86·1; CVnCoV 12 cases in 1735·29 person-years, placebo 37 cases in 1569·87 person-years). In participants aged 18–60 years, vaccine efficacy against symptomatic disease was 52·5% (95% CI 36·2–64·8; CVnCoV 71 cases in 1591·47 person-years, placebo, 136 cases in 1449·23 person-years). Too few cases occurred in participants aged 61 years or older (CVnCoV 12, placebo nine) to allow meaningful assessment of vaccine efficacy. Solicited adverse events, which were mostly systemic, were more common in CVnCoV recipients (1933 [96·5%] of 2003) than in placebo recipients (1344 [67·9%] of 1978), with 542 (27·1%) CVnCoV recipients and 61 (3·1%) placebo recipients reporting grade 3 solicited adverse events. The most frequently reported local reaction after any dose in the CVnCoV group was injection-site pain (1678 [83·6%] of 2007), with 22 grade 3 reactions, and the most frequently reported systematic reactions were fatigue (1603 [80·0%] of 2003) and headache (1541 [76·9%] of 2003). 82 (0·4%) of 19 783 CVnCoV recipients reported 100 serious adverse events and 66 (0·3%) of 19 746 placebo recipients reported 76 serious adverse events. Eight serious adverse events in five CVnCoV recipients and two serious adverse events in two placebo recipients were considered vaccination-related. None of the fatal serious adverse events reported (eight in the CVnCoV group and six in the placebo group) were considered to be related to study vaccination. Adverse events of special interest were reported for 38 (0·2%) participants in the CVnCoV group and 31 (0·2%) participants in the placebo group. These events were considered to be related to the trial vaccine for 14 (<0·1%) participants in the CVnCoV group and for five (<0·1%) participants in the placebo group. Interpretation: CVnCoV was efficacious in the prevention of COVID-19 of any severity and had an acceptable safety profile. Taking into account the changing environment, including the emergence of SARS-CoV-2 variants, and timelines for further development, the decision has been made to cease activities on the CVnCoV candidate and to focus efforts on the development of next-generation vaccine candidates. Funding: German Federal Ministry of Education and Research and CureVac
    corecore