27 research outputs found

    Clonal expansion and epigenetic inheritance of long-lasting NK cell memory

    Get PDF
    Clonal expansion of cells with somatically diversified receptors and their long-term maintenance as memory cells is a hallmark of adaptive immunity. Here, we studied pathogen-specific adaptation within the innate immune system, tracking natural killer (NK) cell memory to human cytomegalovirus (HCMV) infection. Leveraging single-cell multiomic maps of ex vivo NK cells and somatic mitochondrial DNA mutations as endogenous barcodes, we reveal substantial clonal expansion of adaptive NK cells in HCMV(+) individuals. NK cell clonotypes were characterized by a convergent inflammatory memory signature enriched for AP1 motifs superimposed on a private set of clone-specific accessible chromatin regions. NK cell clones were stably maintained in specific epigenetic states over time, revealing that clonal inheritance of chromatin accessibility shapes the epigenetic memory repertoire. Together, we identify clonal expansion and persistence within the human innate immune system, suggesting that these mechanisms have evolved independent of antigen-receptor diversification

    Mitochondrial variant enrichment from high-throughput single-cell RNA-seq resolves clonal populations

    Get PDF
    Reconstructing lineage relationships in complex tissues can reveal mechanisms underlying development and disease. Recent methods combine single-cell transcriptomics with mitochondrial DNA variant detection to establish lineage relationships in primary human cells, but are not scalable to interrogate complex tissues. To overcome this limitation, here we develop a technology for high-confidence detection of mitochondrial mutations from high-throughput single-cell RNA-sequencing. We use the new method to identify skewed immune cell expansions in primary human clonal hematopoiesis

    Transcriptional states and chromatin accessibility underlying human erythropoiesis

    Get PDF
    Human erythropoiesis serves as a paradigm of physiologic cellular differentiation. This process is also of considerable interest for better understanding anemias and identifying new therapies. Here, we apply deep transcriptomic and accessible chromatin profiling to characterize a faithful ex vivo human erythroid differentiation system from hematopoietic stem and progenitor cells. We reveal stage-specific transcriptional states and chromatin accessibility during various stages of erythropoiesis, including 14,260 differentially expressed genes and 63,659 variably accessible chromatin peaks. Our analysis suggests differentiation stage-predominant roles for specific master regulators, including GATA1 and KLF1. We integrate chromatin profiles with common and rare genetic variants associated with erythroid cell traits and diseases, finding that variants regulating different erythroid phenotypes likely act at variable points during differentiation. In addition, we identify a regulator of terminal erythropoiesis, TMCC2, more broadly illustrating the value of this comprehensive analysis to improve our understanding of erythropoiesis in health and disease

    Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with human diseases and traits. However, the majority of GWAS-implicated variants are in non-coding regions of the genome and require in depth follow-up to identify target genes and decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes at 38 GWAS loci, with most loci harboring 1-2 candidate genes. Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by this approach are enriched in specific and relevant biological pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be defined. More generally, this functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human diseases and traits

    Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features

    Get PDF
    Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants

    Impaired human hematopoiesis due to a cryptic intronic splicing mutation

    Get PDF
    Studies of allelic variation underlying genetic blood disorders have provided important insights into human hematopoiesis. Most often, the identified pathogenic mutations result in loss-of-function or missense changes. However, assessing the pathogenicity of noncoding variants can be challenging. Here, we characterize two unrelated patients with a distinct presentation of dyserythropoietic anemia and other impairments in hematopoiesis associated with an intronic mutation in GATA1 that is 24 nucleotides upstream of the canonical splice acceptor site. Functional studies demonstrate that this single-nucleotide alteration leads to reduced canonical splicing and increased use of an alternative splice acceptor site that causes a partial intron retention event. The resultant altered GATA1 contains a five-amino acid insertion at the C-terminus of the C-terminal zinc finger and has no observable activity. Collectively, our results demonstrate how altered splicing of GATA1, which reduces levels of the normal form of this master transcription factor, can result in distinct changes in human hematopoiesis

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    Concomitant sequencing of accessible chromatin and mitochondrial genomes in single cells using mtscATAC-seq

    No full text
    Mitochondria are unique organelles of eukaryotic cells that carry their own multicopy number and circular genome. In most mammals, including humans and mice, the size of the chromosome is ~16,000 base pairs and unlike nuclear DNA, mitochondrial DNA (mtDNA) is not densely compacted. This results in mtDNA to be highly accessible for enzymes such as the Tn5 transposase, commonly used for accessible chromatin profiling of nuclear chromatinized DNA. Here, we describe a method for the concomitant sequencing of mtDNA and accessible chromatin in thousands of individual cells via the mitochondrial single-cell assay for transposase accessible chromatin by sequencing (mtscATAC-seq). Our approach extends the utility of existing scATAC-seq products and protocols as we (Nam et al, Nat Rev Genet 22:3-18, 2021) fix cells using formaldehyde to retain mitochondria and its mtDNA within its originating cell, (Buenrostro et al, Nat Methods 10:1213-1218, 2013) modify lysis conditions to permeabilize cells and mitochondria, and (Corces et al, Nat Methods 14:959-962, 2017) optimize bioinformatic processing protocols to collectively increase mitochondrial genome coverage for downstream analysis. Here, we discuss the essentials for the experimental and computational methodologies to generate and analyze thousands of multiomic profiles of single cells over the course of a few days, enabling the profiling of accessible chromatin and mtDNA genotypes to reconstruct clonal relationships and studies of mitochondrial genetics and disease

    Longitudinal assessment of clonal mosaicism in human hematopoiesis via mitochondrial mutation tracking

    No full text
    Our ability to track cellular dynamics in humans over time in vivo has been limited. Here, we demonstrate how somatic mutations in mitochondrial DNA (mtDNA) can be used to longitudinally track the dynamic output of hematopoietic stem and progenitor cells in humans. Over the course of 3 years of blood sampling in a single individual, our analyses reveal somatic mtDNA sequence variation and evolution reminiscent of models of hematopoiesis established by genetic labeling approaches. Furthermore, we observe fluctuations in mutation heteroplasmy, coinciding with specific clinical events, such as infections, and further identify lineage-specific somatic mtDNA mutations in longitudinally sampled circulating blood cell subsets in individuals with leukemia. Collectively, these observations indicate the significant potential of using tracking of somatic mtDNA sequence variation as a broadly applicable approach to systematically assess hematopoietic clonal dynamics in human health and disease
    corecore