47 research outputs found

    On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O compound

    Get PDF
    In this paper, we study the elastic properties of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O using experimental and first principles techniques. Our measurements of the indentation modulus on grains with a wide range of crystallographic orientations of the entropy-stabilized oxide revealed a high degree of elastic isotropy at ambient conditions. First principles calculations predict mild elastic anisotropy for the paramagnetic structure, which decreases when the system is considered to be non-magnetic. When the antiferromagnetic state of CoO, CuO, and NiO is accounted for in the calculations, a slight increase in elastic anisotropy is observed, suggesting a coupling between magnetic ordering and the orientation dependent elastic properties. Furthermore, an examination of the local structure reveals that the isotropy is favored through local ionic distortions of Cu and Zn - due to their tendencies to form tenorite and wurtzite phases. The relationships between the elastic properties of the multicomponent oxide and those of its constituent binary oxides are reviewed. These insights open up new avenues for controlling isotropy for technological applications through tuning composition and structure in the entropy-stabilized oxide or the high-entropy compounds in general

    Oxidation Induced Stress-Rupture of Fiber Bundles

    No full text
    The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t{sup {minus}1/4}. It is also shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the special case of Nicalon{trademark} fibers
    corecore