11 research outputs found

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    Full text link
    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomic areas, like the thorax. Monte Carlo techniques provide superior accuracy, however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the Fast Dose Calculator for proton radiotherapy on a card equipped with graphics processor units (GPU) rather than a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than one minute utilizing one single GPU card, which should allow real-time accurate dose calculations

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Geant4 Developments and Applications

    Get PDF
    Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Its functionality and modeling capabilities continue to be extended, while its performance is enhanced. An overview of recent developments in diverse areas of the toolkit is presented. These include performance optimization for complex setups; improvements for the propagation in fields; new options for event biasing; and additions and improvements in geometry, physics processes and interactive capabilities

    First Monte Carlo simulation study of Galeras volcano structure using muon tomography

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from View the MathML source and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Geant4 - A simulation toolkit

    Get PDF
    none127Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from View the MathML source and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.noneS. Agostinelli;J. Allison;K. Amako;J. Apostolakis;H. Araujo;P. Arce;M. Asai;D. Axen;S. Banerjee;G. Barrand;F. Behner;L. Bellagamba;J. Boudreau;L. Broglia;A. Brunengo;H. Burkhardt;S. Chauvie;J. Chuma;R. Chytracek;G. Cooperman;G. Cosmo;P. Degtyarenko;A. Dell'Acqua;G. Depaola;D. Dietrich;R. Enami;A. Feliciello;C. Ferguson;H. Fesefeldt;G. Folger;F. Foppiano;A. Forti;S. Garelli;S. Giani;R. Giannitrapani;D. Gibin;J.J. Gómez Cadenas;I. González;G. Gracia Abril;G. Greeniaus;W. Greiner;V. Grichine;A. Grossheim;S. Guatelli;P. Gumplinger;R. Hamatsu;K. Hashimoto;H. Hasui;A. Heikkinen;A. Howard;V. Ivanchenko;A. Johnson;F.W. Jones;J. Kallenbach;N. Kanaya;M. Kawabata;Y. Kawabata;M. Kawaguti;S. Kelner;P. Kent;A. Kimura;T. Kodama;R. Kokoulin;M. Kossov;H. Kurashige;E. Lamanna;T. Lampén;V. Lara;V. Lefebure;F. Lei;M. Liendl;W. Lockman;F. Longo;S. Magni;M. Maire;E. Medernach;K. Minamimoto;P. Mora de Freitas;Y. Morita;K. Murakami;M. Nagamatu;R. Nartallo;P. Nieminen;T. Nishimura;K. Ohtsubo;M. Okamura;S. O'Neale;Y. Oohata;K. Paech;J. Perl;A. Pfeiffer;M.G. Pia;F. Ranjard;A. Rybin;S. Sadilov;E. Di Salvo;G. Santin;T. Sasaki;N. Savvas;Y. Sawada;S. Scherer;S. Sei;V. Sirotenko;D. Smith;N. Starkov;H. Stoecker;J. Sulkimo;M. Takahata;S. Tanaka;E. Tcherniaev;E. Safai Tehrani;M. Tropeano;P. Truscott;H. Uno;L. Urban;P. Urban;M. Verderi;A. Walkden;W. Wander;H. Weber;J.P. Wellisch;T. Wenaus;D.C. Williams;D. Wright;T. Yamada;H. Yoshida;D. ZschiescheS., Agostinelli; J., Allison; K., Amako; J., Apostolakis; H., Araujo; P., Arce; M., Asai; D., Axen; S., Banerjee; G., Barrand; F., Behner; L., Bellagamba; J., Boudreau; L., Broglia; A., Brunengo; H., Burkhardt; S., Chauvie; J., Chuma; R., Chytracek; G., Cooperman; G., Cosmo; P., Degtyarenko; A., Dell'Acqua; G., Depaola; D., Dietrich; R., Enami; A., Feliciello; C., Ferguson; H., Fesefeldt; G., Folger; F., Foppiano; A., Forti; S., Garelli; S., Giani; R., Giannitrapani; Gibin, Daniele; J. J., Gómez Cadenas; I., González; G., Gracia Abril; G., Greeniaus; W., Greiner; V., Grichine; A., Grossheim; S., Guatelli; P., Gumplinger; R., Hamatsu; K., Hashimoto; H., Hasui; A., Heikkinen; A., Howard; V., Ivanchenko; A., Johnson; F. W., Jones; J., Kallenbach; N., Kanaya; M., Kawabata; Y., Kawabata; M., Kawaguti; S., Kelner; P., Kent; A., Kimura; T., Kodama; R., Kokoulin; M., Kossov; H., Kurashige; E., Lamanna; T., Lampén; V., Lara; V., Lefebure; F., Lei; M., Liendl; W., Lockman; F., Longo; S., Magni; M., Maire; E., Medernach; K., Minamimoto; P., Mora de Freitas; Y., Morita; K., Murakami; M., Nagamatu; R., Nartallo; P., Nieminen; T., Nishimura; K., Ohtsubo; M., Okamura; S., O'Neale; Y., Oohata; K., Paech; J., Perl; A., Pfeiffer; M. G., Pia; F., Ranjard; A., Rybin; S., Sadilov; E., Di Salvo; G., Santin; T., Sasaki; N., Savvas; Y., Sawada; S., Scherer; S., Sei; V., Sirotenko; D., Smith; N., Starkov; H., Stoecker; J., Sulkimo; M., Takahata; S., Tanaka; E., Tcherniaev; E., Safai Tehrani; M., Tropeano; P., Truscott; H., Uno; L., Urban; P., Urban; M., Verderi; A., Walkden; W., Wander; H., Weber; J. P., Wellisch; T., Wenaus; D. C., Williams; D., Wright; T., Yamada; H., Yoshida; D., Zschiesch

    CMS : the TriDAS Project Technical Design Report; v.1, the Trigger Systems

    No full text
    CM

    CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems

    No full text

    The ATLAS Experiment at the CERN Large Hadron Collider

    No full text
    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented
    corecore