100 research outputs found

    Identifying and ranking potential driver genes of Alzheimer\u27s disease using multiview evidence aggregation.

    Get PDF
    MOTIVATION: Late onset Alzheimer\u27s disease is currently a disease with no known effective treatment options. To better understand disease, new multi-omic data-sets have recently been generated with the goal of identifying molecular causes of disease. However, most analytic studies using these datasets focus on uni-modal analysis of the data. Here, we propose a data driven approach to integrate multiple data types and analytic outcomes to aggregate evidences to support the hypothesis that a gene is a genetic driver of the disease. The main algorithmic contributions of our article are: (i) a general machine learning framework to learn the key characteristics of a few known driver genes from multiple feature sets and identifying other potential driver genes which have similar feature representations, and (ii) A flexible ranking scheme with the ability to integrate external validation in the form of Genome Wide Association Study summary statistics. While we currently focus on demonstrating the effectiveness of the approach using different analytic outcomes from RNA-Seq studies, this method is easily generalizable to other data modalities and analysis types. RESULTS: We demonstrate the utility of our machine learning algorithm on two benchmark multiview datasets by significantly outperforming the baseline approaches in predicting missing labels. We then use the algorithm to predict and rank potential drivers of Alzheimer\u27s. We show that our ranked genes show a significant enrichment for single nucleotide polymorphisms associated with Alzheimer\u27s and are enriched in pathways that have been previously associated with the disease. AVAILABILITY AND IMPLEMENTATION: Source code and link to all feature sets is available at https://github.com/Sage-Bionetworks/EvidenceAggregatedDriverRanking

    Molecular estimation of neurodegeneration pseudotime in older brains.

    Get PDF
    The temporal molecular changes that lead to disease onset and progression in Alzheimer\u27s disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score, P = 1.0 × 10-5), Aβ (CERAD score, P = 1.8 × 10-5), and cognitive diagnosis (P = 3.5 × 10-7) of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and show changes in basic cellular functions. Late stage disease pseudotime samples are enriched for late stage AD cases and show changes in neuroinflammation and amyloid pathologic processes. We also identify a set of late stage pseudotime samples that are controls and show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and prevention of amyloid cleavage pathways. In summary, we present a method for ordering patients along a trajectory of LOAD disease progression from brain transcriptomic data

    A genome-wide association analysis of temozolomide response using lymphoblastoid cell lines reveals a clinically relevant association with MGMT

    Get PDF
    Recently, lymphoblastoid cell lines (LCLs) have emerged as an innovative model system for mapping gene variants that predict dose response to chemotherapy drugs. In the current study, this strategy was expanded to the in vitro genome-wide association approach, using 516 LCLs derived from a Caucasian cohort to assess cytotoxic response to temozolomide. Genome-wide association analysis using approximately 2.1 million quality controlled single-nucleotide polymorphisms (SNPs) identified a statistically significant association (p < 10−8) with SNPs in the O6-methylguanine–DNA methyltransferase (MGMT) gene. We also demonstrate that the primary SNP in this region is significantly associated with differential gene expression of MGMT (p< 10−26) in LCLs, and differential methylation in glioblastoma samples from The Cancer Genome Atlas. The previously documented clinical and functional relationships between MGMT and temozolomide response highlight the potential of well-powered GWAS of the LCL model system to identify meaningful genetic associations

    Open drug discovery in Alzheimer\u27s disease.

    Get PDF
    Alzheimer\u27s disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research

    Genome-wide Association of Lipid-lowering Response to Statins in Combined Study Populations

    Get PDF
    Background: Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy. Methods and Principal Findings: Bayesian and standard frequentist association analyses were performed on untreated and statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8 weeks). Genotype imputation was used to maximize genomic coverage and to combine information across studies. Phenotypes were normalized within each study to account for systematic differences among studies, and fixed-effects combined analysis of the combined sample were performed to detect consistent effects across studies. Two SNP associations were assessed as having posterior probability greater than 50%, indicating that they were more likely than not to be genuinely associated with statin-mediated lipid response. SNP rs8014194, located within the CLMN gene on chromosome 14, was strongly associated with statin-mediated change in total cholesterol with an 84% probability by Bayesian analysis, and a p-value exceeding conventional levels of genome-wide significance by frequentist analysis (P = 1.8×10−8^{−8}). This SNP was less significantly associated with change in LDL-cholesterol (posterior probability = 0.16, P = 4.0×10−6^{−6}). Bayesian analysis also assigned a 51% probability that rs4420638, located in APOC1 and near APOE, was associated with change in LDL-cholesterol. Conclusions and Significance: Using combined GWA analysis from three clinical trials involving nearly 4,000 individuals treated with simvastatin, pravastatin, or atorvastatin, we have identified SNPs that may be associated with variation in the magnitude of statin-mediated reduction in total and LDL-cholesterol, including one in the CLMN gene for which statistical evidence for association exceeds conventional levels of genome-wide significance.Trial Registration PRINCE and TNT are not registered. CAP is registered at Clinicaltrials.gov NCT0045182
    • …
    corecore