188 research outputs found
Independent association of resting energy expenditure with blood pressure: confirmation in populations of the African diaspora
Obesity is a major risk factor for hypertension, however, the physiologic mechanisms linking increased adiposity to elevations in blood pressure are not well described. An increase in resting energy expenditure (REE) is an obligatory consequence of obesity. Previous survey research has demonstrated that REE is an independent predictor of blood pressure, and eliminates the co-linear association of body mass index. This observation has received little attention and there have been no attempts to provide a causal explanation
Recommended from our members
Gut microbial features can predict host phenotype response to protein deficiency.
Malnutrition remains a major health problem in low- and middle-income countries. During low protein intake, <0.67 g/kg/day, there is a loss of nitrogen (N2 ) balance, due to the unavailability of amino acid for metabolism and unbalanced protein catabolism results. However, there are individuals, who consume the same low protein intake, and preserve N2 balance for unknown reasons. A novel factor, the gut microbiota, may account for these N2 balance differences. To investigate this, we correlated gut microbial profiles with the growth of four murine strains (C57Bl6/J, CD-1, FVB, and NIH-Swiss) on protein deficient (PD) diet. Results show that a PD diet exerts a strain-dependent impact on growth and N2 balance as determined through analysis of urinary urea, ammonia and creatinine excretion. Bacterial alpha diversity was significantly (P < 0.05, FDR) lower across all strains on a PD diet compared to normal chow (NC). Multi-group analyses of the composition of microbiomes (ANCOM) revealed significantly differential microbial signatures between the four strains independent of diet. However, mice on a PD diet demonstrated differential enrichment of bacterial genera including, Allobaculum (C57Bl6/J), Parabacteroides (CD-1), Turicibacter (FVB), and Mucispirillum (NIH-Swiss) relative to NC. For instance, selective comparison of the CD-1 (gained weight) and C57Bl6/J (did not gain weight) strains on PD diet also demonstrated significant pathway enrichment of dihydroorodate dehydrogenase, rRNA methyltransferases, and RNA splicing ligase in the CD-1 strains compared to C57Bl6/J strains; which might account in their ability to retain growth despite a protein deficient diet. Taken together, these results suggest a potential relationship between the specific gut microbiota, N2 balance and animal response to malnutrition
The obese gut microbiome across the epidemiologic transition
Abstract The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host’s geographic location ‘human geography’, and behavioral factors (diet and physical activity). Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic
Fasting substrate oxidation in relation to habitual dietary fat intake and insulin resistance in non-diabetic women: a case for metabolic flexibility?
BACKGROUND: Metabolic flexibility described as "the capacity of the body to match fuel oxidation to fuel availability" has been implicated in insulin resistance. We examined fasting substrate oxidation in relation to dietary macronutrient intake, and markers of insulin resistance in otherwise healthy women, with and without a family history of diabetes mellitus (FH DM). METHODS: We measured body composition (dual x-ray absorptiometry), visceral and subcutaneous adipose tissue area (VAT, SAT, using Computerised Tomography), fasting [glucose], [insulin], [free fatty acids], [blood lipids], insulin resistance (HOMA-IR), resting energy expenditure (REE), respiratory exchange ratio(RER) and self-reported physical activity in a convenience sample of 180 women (18-45 yrs). A food frequency questionnaire was used to assess energy intake (EI) and calculate the RER: Food Quotient (FQ) ratio. Only those with EI:REE (1.05 -2.28) were included (N=140). Insulin resistance was defined HOMA-IR (>1.95). RESULTS: The Insulin Resistant (IR) group had higher energy, carbohydrate and protein intakes (p<0.05) and lower PA levels than Insulin Sensitive (IS) group (P<0.001), but there were no differences in RER or RER:FQ between groups. However, nearly 50% of the variance in HOMA-IR was explained by age, body fat %, VAT, RER:FQ and FH DM (adjusted R2=0.50, p<0.0001). Insulin-resistant women, and those with FH DM had a higher RER:FQ than their counterparts (p<0.01), independent of body fat % or distribution. CONCLUSION: In these apparently healthy, weight-stable women, insulin resistance and FH DM were associated with lower fat oxidation in relation to dietary fat intake, suggesting lower metabolic flexibility
Extreme Events Reveal an Alimentary Limit on Sustained Maximal Human Energy Expenditure
Acknowledgments: We thank the RASUA runners for their participation and the 100 Mile Club ® for developing and supporting RAUSA. Jenny Paltan assisted with isotope analyses. Funding: Hunter College, Loyola Medical School, Grand Valley State University, and Purdue University. J.R.S. was supported by the strategic priority research program of the Chinese Academy of Sciences (grant XDB13030100), the 1000 Talents organization, and a Wolfson merit award from the UK Royal society. Author contributions: All authors contributed to study design and writing the manuscript. H.P. designed DLW analyses for the RAUSA subjects. C.T. collected DLW and other RAUSA data in the field. L.D. collected RMR measures for RAUSA subjects. B.C. organized RAUSA data collection. H.P. and J.R.S. analyzed data on expenditure and weight change, and developed the alimentary constraint model. Competing interests: Authors declare no competing interests. Data and materials availability: All data is available in the main text or the supplementary materials.Peer reviewedPublisher PD
Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals
The aim of this study was to measure the effects of 12 weeks of conjugated linoleic acid (CLA) supplementation on body composition, RER, RMR, blood lipid profiles, insulin sensitivity and appetite in exercising, normal-weight persons. In this double-blind, randomised, controlled trial, sixty-two non-obese subjects (twenty-five men, thirty-seven women) received either 3.9 g/d CLA or 3.9 g high-oleic acid sunflower oil for 12 weeks. Prior to and after 12 weeks of supplementation, oral glucose tolerance, blood lipid concentrations, body composition (dual-energy X-ray absorptiometry and computerised tomography scans), RMR, resting and exercising RER and appetite were measured. There were no significant effects of CLA on body composition or distribution, RMR, RER or appetite. During the oral glucose tolerance tests, mean plasma insulin concentrations (0, 30, 120 min) were significantly lower (P= 0.04) in women who supplemented with CLA (24.3 (SD 9.7) to 20.4 (SD 8.5) microU/ml) compared to high-oleic acid sunflower oil control (23.7 (SD 9.8) to 26.0 (SD 8.8) microU/ml). Serum NEFA levels in response to oral glucose were attenuated in both men and women in the CLA (P=0.001) compared to control group. However, serum total cholesterol and LDL-cholesterol concentrations decreased in both groups and HDL-cholesterol concentrations decreased in women over 12 weeks (P=0.001, P=0.02, P=0.02, respectively). In conclusion, mixed-isomer CLA supplementation had a favourable effect on serum insulin and NEFA response to oral glucose in non-obese, regularly exercising women, but there were no CLA-specific effects on body composition, energy expenditure or appetite
Physical activity and pre-diabetes—an unacknowledged mid-life crisis: findings from NHANES 2003–2006
The prevalence of pre-diabetes (PD) among US adults has increased substantially over the past two decades. By current estimates, over 34% of US adults fall in the PD category, 84% of whom meet the American Diabetes Association’s criteria for impaired fasting glucose (IFG). Low physical activity (PA) and/or sedentary behavior are key drivers of hyperglycemia. We examined the relationship between PD and objectively measured PA in NHANES 2003–2006 of 20,470 individuals, including 7,501 individuals between 20 and 65 yrs.We excluded all participants without IFG measures or adequate accelerometry data (final N = 1,317). Participants were identified as PD if FPG was 100–125 mg/dL (5.6–6.9 mmol/L). Moderate and vigorous PA in minutes/day individuals were summed to create the exposure variable “moderate-vigorous PA” (MVPA). The analysis sample included 884 normoglycemic persons and 433 with PD. There were significantly fewer PD subjects in the middle (30.3%) and highest (24.6%) tertiles of PA compared to the lowest tertile (35.5%). After adjusting for BMI, participants were 0.77 times as likely to be PD if they were in the highest tertile compared to the lowest PA tertile (p < 0.001). However, these results were no longer significant when age and BMI were held constant. Univariate analysis revealed that physical activity was associated with decreased fasting glucose of 0.5 mg/dL per minute of MVPA, but multivariate analysis adjusting for age and BMI was not significant. Overall, our data suggest a negative association between measures of PA and the prevalence of PD in middle-aged US adults independent of adiposity, but with significant confounding influence from measures of BMI and age
Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women.
We compared the gut microbial populations in 100 women, from rural Ghana and urban US [50% lean (BMI < 25 kg/m2) and 50% obese (BMI ≥ 30 kg/m2)] to examine the ecological co-occurrence network topology of the gut microbiota as well as the relationship of short chain fatty acids (SCFAs) with obesity. Ghanaians consumed significantly more dietary fiber, had greater microbial alpha-diversity, different beta-diversity, and had a greater concentration of total fecal SCFAs (p-value < 0.002). Lean Ghanaians had significantly greater network density, connectivity and stability than either obese Ghanaians, or lean and obese US participants (false discovery rate (FDR) corrected p-value ≤ 0.01). Bacteroides uniformis was significantly more abundant in lean women, irrespective of country (FDR corrected p < 0.001), while lean Ghanaians had a significantly greater proportion of Ruminococcus callidus, Prevotella copri, and Escherichia coli, and smaller proportions of Lachnospiraceae, Bacteroides and Parabacteroides. Lean Ghanaians had a significantly greater abundance of predicted microbial genes that catalyzed the production of butyric acid via the fermentation of pyruvate or branched amino-acids, while obese Ghanaians and US women (irrespective of BMI) had a significantly greater abundance of predicted microbial genes that encoded for enzymes associated with the fermentation of amino-acids such as alanine, aspartate, lysine and glutamate. Similar to lean Ghanaian women, mice humanized with stool from the lean Ghanaian participant had a significantly lower abundance of family Lachnospiraceae and genus Bacteroides and Parabacteroides, and were resistant to obesity following 6-weeks of high fat feeding (p-value < 0.01). Obesity-resistant mice also showed increased intestinal transcriptional expression of the free fatty acid (Ffa) receptor Ffa2, in spite of similar fecal SCFAs concentrations. We demonstrate that the association between obesity resistance and increased predicted ecological connectivity and stability of the lean Ghanaian microbiota, as well as increased local SCFA receptor level, provides evidence of the importance of robust gut ecologic network in obesity
An Actor-Based Model of Social Network Influence on Adolescent Body Size, Screen Time, and Playing Sports
Recent studies suggest that obesity may be “contagious” between individuals in social networks. Social contagion (influence), however, may not be identifiable using traditional statistical approaches because they cannot distinguish contagion from homophily (the propensity for individuals to select friends who are similar to themselves) or from shared environmental influences. In this paper, we apply the stochastic actor-based model (SABM) framework developed by Snijders and colleagues to data on adolescent body mass index (BMI), screen time, and playing active sports. Our primary hypothesis was that social influences on adolescent body size and related behaviors are independent of friend selection. Employing the SABM, we simultaneously modeled network dynamics (friendship selection based on homophily and structural characteristics of the network) and social influence. We focused on the 2 largest schools in the National Longitudinal Study of Adolescent Health (Add Health) and held the school environment constant by examining the 2 school networks separately (N = 624 and 1151). Results show support in both schools for homophily on BMI, but also for social influence on BMI. There was no evidence of homophily on screen time in either school, while only one of the schools showed homophily on playing active sports. There was, however, evidence of social influence on screen time in one of the schools, and playing active sports in both schools. These results suggest that both homophily and social influence are important in understanding patterns of adolescent obesity. Intervention efforts should take into consideration peers’ influence on one another, rather than treating “high risk” adolescents in isolation
- …