17 research outputs found
Further biochemical characterization of wheat DNA primase: possible functional implication of copurification with DNA polymerase A.
DNA primase has been partially purified from wheat germ. This enzyme, like DNA primases characterized from many procaryotic and eucaryotic sources, catalyses the synthesis of primers involved in DNA replication. However, the wheat enzyme differs from animal DNA primase in that it is found partially associated with a DNA polymerase which differs greatly from DNA polymerase alpha. Moreover, the only wheat DNA polymerase able to initiate on a natural or synthetic RNA primer is DNA polymerase A. In this report we describe in greater detail the chromatographic behaviour of wheat DNA primase and its copurification with DNA polymerase A. Some biochemical properties of wheat DNA primase such as pH optimum, Mn + 2 or Mg + 2 optima, and temperature optimum have been determined. The enzyme is strongly inhibited by KCI, cordycepine triphosphate and dATP, and to a lesser extent by cAMP and formycine triphosphate. The primase product reaction is resistant to DNAse digestion and sensitive to RNAse digestion. Primase catalyses primer synthesis on M13 ssDNA as template allowing E.coli DNA polymerase I to replicate the primed M13 single-stranded DNA leading to double-stranded M13 DNA (RF). M13 replication experiments were performed with wheat DNA polymerases A, B, CI and CII purified in our laboratory. Only DNA polymerase A is able to recognize RNA-primed M13 ssDNA
A DNA polymerase activity is associated with Cauliflower Mosaic Virus.
A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa
Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand
Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5′ ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin