113 research outputs found

    Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling

    Full text link
    The present work investigates the optimal level of residual hydrogen in partially de-hydrogenated powder to produce CP-Ti plate compacts using ECAP with back pressure which are subsequently rolled at low temperature. A comparative study of the compaction of two TiH2 powders and a CP-Ti powder, with particle sizes 150 um, 50um and 45 um respectively, has been carried out. The hydride powders have also been compacted in a partially de-hydrogenated state. The optimal level of residual hydrogen with respect to the density of the resulting compact and the associated mechanical properties has been defined. ECAP at 300&deg;C produced compacts from these partially de-hydrogenated powders of 99.5% theoretical density, while CP-Ti was compacted to almost full theoretical density under the same ECAP conditions. Therefore, the compaction of powder by ECAP does not benefit from temporary hydrogen alloying.These compacts then were rolled at temperatures ranging from room temperature to 500&deg;C with an 80% reduction in a single pass. Heat treatment after the rolling can modify the microstructure to improve the resulting mechanical properties and in this regard the temporary alloying with hydrogen has been observed to offer some significant benefits. It is shown the ECAP followed by low temperature rolling is a promising route to the batch production of fully dense CP-Ti wrought product from powder feedstock that avoids the need to subject the material to temperatures greater than 500&deg;C. This low temperature route is expected to be efficient from an energy point of view and it also avoids the danger of interstitial contamination that accompanies most high temperature powder processing.<br /

    Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium

    Get PDF
    The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical properties achieved by ECAP without a loss of biocompatibility suggests that this is a very promising processing route to bioimplant manufacturing. The study thus supports the expectation that commercial purity titanium modified by ECAP can be seen as an excellent candidate material for bone implants suitable for replacing conventional titanium alloy implants

    Modeling the effect of primary and secondary twinning on texture evolution during severe plastic deformation of a twinning-induced plasticity steel

    Full text link
    Modeling the effect of deformation twinning and the ensuing twin-twin- and slip-twin-induced hardening is a long-standing problem in computational mechanical metallurgy of materials that deform by both slip and twinning. In this work, we address this effect using the twin volume transfer method, which obviates the need of any cumbersome criterion for twin variant selection. Additionally, this method is capable of capturing, at the same time, secondary or double twinning, which is particularly important for modeling in large strain regimes. We validate our modeling methodology by simulating the behavior of an Fe-23Mn-1.5Al-0.3C twinning-induced plasticity (TWIP) steel under large strain conditions, experimentally achieved in this work through equal-channel angular pressing (ECAP) for up to two passes in a 90&deg; die following route BC at 300 &deg;C. Each possible twin variant, whether nucleating inside the parent grain or inside a potential primary twin variant was predefined in the initial list of orientations as possible grain of the polycrystal with zero initial volume fraction. A novelty of our approach is to take into account the loss of coherency of the twins with their parent matrix under large strains, obstructing progressively their further growth. This effect has been captured by attenuating growth rates of twins as a function of their rotation away from their perfect twin orientation, dubbed here as &ldquo;disorientation&rdquo; with respect to the mother grain&rsquo;s lattice. The simulated textures and the hardening under tensile strain showed very good agreement with experimental characterization and mechanical testing results. Furthermore, upper-bound Taylor deformation was found to be operational for the TWIP steel deformation when all the above ingredients of twinning are captured, indicating that self-consistent schemes can be bypassed. <br /

    Asymmetric rolling of interstitial-free steel using differential roll diameters. Part II : microstructure and annealing effects

    Full text link
    The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes

    Damage evolution under severe plastic deformation

    Full text link

    The positive role of back-pressure in equal channel angular extrusion

    Full text link

    The function of the counterpressure on equal channel angular pressing

    Full text link

    The role of back-pressure in equal channel angular extrusion

    Full text link

    The Positive Role of Back-Pressure in Equal Channel Angular Extrusion

    No full text
    • …
    corecore