22 research outputs found

    An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB).

    Get PDF
    BACKGROUND: KIWI (NCT01705145) was a 24-week, single-arm, pharmacokinetics, safety, and efficacy study of ivacaftor in children aged 2 to 5 years with cystic fibrosis (CF) and a CFTR gating mutation. Here, we report the results of KLIMB (NCT01946412), an 84-week, open-label extension of KIWI. METHODS: Children received age- and weight-based ivacaftor dosages for 84 weeks. The primary outcome was safety. Other outcomes included sweat chloride, growth parameters, and measures of pancreatic function. RESULTS: All 33 children who completed KIWI enrolled in KLIMB; 28 completed 84 weeks of treatment. Most adverse events were consistent with those reported during KIWI. Ten (30%) children had transaminase elevations >3 × upper limit of normal (ULN), leading to 1 discontinuation in a child with alanine aminotransferase >8 × ULN. Improvements in sweat chloride, weight, and body mass index z scores and fecal elastase-1 observed during KIWI were maintained during KLIMB; there was no further improvement in these parameters. CONCLUSIONS: Ivacaftor was generally well tolerated for up to 108 weeks in children aged 2 to 5 years with CF and a gating mutation, with safety consistent with the KIWI study. Improvements in sweat chloride and growth parameters during the initial 24 weeks of treatment were maintained for up to an additional 84 weeks of treatment. Prevalence of raised transaminases remained stable and did not increase with duration of exposure during the open-label extension

    Sodium outflux and ATPase activity in human and rabbit erythrocytes.

    No full text

    Long-Term Inhaled Dry Powder Mannitol in Cystic Fibrosis An International Randomized Study

    No full text
    Rationale: New treatment strategies are needed to improve airway clearance and reduce the morbidity and the time burden associated with cystic fibrosis (CF). Objectives: To determine whether long-term treatment with inhaled mannitol, an osmotic agent, improves lung function and morbidity. Methods: Double-blind, randomized, controlled trial of inhaled mannitol, 400 mg twice a day (n = 192, "treated" group) or 50 mg twice a day (n = 126, "control" group) for 26 weeks, followed by 26 weeks of open-label treatment. Measurements and Main Results: The primary endpoint was absolute change in FEV1 from baseline in treated versus control groups, averaged over the study period. Secondary endpoints included other spirometric measurements, pulmonary exacerbations, and hospitalization. Clinical, microbiologic, and laboratory safety were assessed. The treated group had a mean improvement in FEV1 of 105 ml (8.2% above baseline). The treated group had a relative improvement in FEV1 of 3.75% (P = 0.029) versus the control group. Adverse events and sputum microbiology were similar in both treatment groups. Exacerbation rates were low, but there were fewer in the treated group (hazard ratio, 0.74; 95% confidence interval, 0.42-1.32; P = 0.31), although this was not statistically significant. In the 26-week open-label extension study, FEV1 was maintained in the original treated group, and improved in the original control group to the same degree. Conclusions: Inhaled mannitol, 400 mg twice a day, resulted in improved lung function over 26 weeks, which was sustained after an additional 26 weeks of treatment. The safety profile was also acceptable, demonstrating the potential role for this chronic therapy for CF. Clinical trial registered with www.clinicaltrials.gov (NCT 00630812

    Contribution of behavior therapy to dietary treatment in cystic fibrosis: A randomized controlled study with 2-year follow-up

    No full text
    Behavioral intervention (BI) was compared to nutrition education (NE) to better understand the contribution of behavior therapy to nutrition management in children with cystic fibrosis (CF). Participants were 7 children between 6 and 12 years of age with weight for age percentiles ranging from the 3rd to the 27th. Families in each condition were seen for 7 sessions and provided the same nutrition information and calorie goals. The BI received training on child behavior management. Caloric intake across meals was evaluated via multiple baseline design. Results indicated that the BI had a greater increase in daily caloric intake (1,036 cal/day) and weight gain (1.42 kg) than the NE (408 cal/day, 0.78 kg). Improved caloric intake was maintained 2 years following treatment

    Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications

    No full text
    Cystic fibrosis (CF), an autosomal recessive disorder resulting from mutations in the cystic fibrosis trans-membrane conductance regulator (CFTR) gene, is the most common lethal genetic illness in the Caucasian population. Gene transfer to airway epithelium, using adenoviruses containing normal CFTR cDNA, leads to transient production of CFTR mRNA and, in some studies, to correction of the airway epithelial ion transport defect caused by dysfunctional CFTR. Inflammatory responses to the adenoviral vector have been reported, particularly at high viral titers. We evaluated the effects of adenovirus-mediated CFTR gene transfer to airway epithelium in 36 subjects with CF (34 individuals, 2 of whom received two separate doses of vector), 20 by lobar instillation and 16 by aerosol administration. Doses ranged from 8 x 10(6) to 2.5 x 10(10) infective units (IU), in 0.5-log increments. After lobar administration of low doses there were occasional reports of cough, low-grade temperature, and myalgias. At the highest lobar dose (2.5 x 10(9) IU) two of three patients had transient myalgias, fever, and increased sputum production with obvious infiltrates on CT scan. After aerosol administration there were no significant systemic symptoms until the 2.5 x 10(10) IU dose, when both patients experienced myalgias and fever that resolved within 24 hr. There were no infiltrates seen on chest CT scans in any of the patients in the aerosol administration group. There were no consistent changes in pulmonary function tests or any significant rise in serum IgG or neutralizing antibodies in patients from either group. Serum, sputum, and nasal cytokines, measured before and after vector administration, showed no correlation with adenoviral dose. Gene transfer to lung cells was inefficient and expression was transient. Cells infected with the vector included mononuclear inflammatory cells as well as cuboidal and columnar epithelial cells. In summary, we found no consistent immune response, no evidence of viral shedding, and no consistent change in pulmonary function in response to adenovirus-mediated CFTR gene transfer. At higher doses there was a mild, nonspecific inflammatory response, as evidenced by fevers and myalgias. Overall, vector administration was tolerated but transfer of CFTR cDNA was inefficient and transgene expression was transient for the doses and method of administration used here

    Population-based newborn screening for genetic disorders when multiple mutation DNA testing is incorporated: a cystic fibrosis newborn screening model demonstrating increased sensitivity but more carrier detections

    No full text
    OBJECTIVES: Newborn screening for cystic fibrosis (CF) provides a model to investigate the implications of applying multiple-mutation DNA testing in screening for any disorder in a pediatric population-based setting, where detection of affected infants is desired and identification of unaffected carriers is not. Widely applied 2-tiered CF newborn screening strategies first test for elevated immunoreactive trypsinogen (IRT) with subsequent analysis for a single CFTR mutation (DeltaF508), systematically missing CF-affected infants with any of the \u3e1000 less common or population-specific mutations. Comparison of CF newborn screening algorithms that incorporate single- and multiple-mutation testing may offer insights into strategies that maximize the public health value of screening for CF and other genetic disorders. The objective of this study was to evaluate technical feasibility and practical implications of 2-tiered CF newborn screening that uses testing for multiple mutations (multiple-CFTR-mutation testing). METHODS: We implemented statewide CF newborn screening using a 2-tiered algorithm: all specimens were assayed for IRT; those with elevated IRT then had multiple-CFTR-mutation testing. Infants who screened positive by detection of 1 or 2 mutations or extremely elevated IRT (\u3e99.8%; failsafe protocol) were then referred for definitive diagnosis by sweat testing. We compared the number of sweat-test referrals using single- with multiple-CFTR-mutation testing. Initial physician assessments and diagnostic outcomes of these screened-positive infants and any affected infants missed by the screen were analyzed. We evaluated compliance with our screening and follow-up protocols. All Massachusetts delivery units, the Newborn Screening Program, pediatric health care providers who evaluate and refer screened-positive infants, and the 5 Massachusetts CF Centers and their affiliated genetic services participated. A 4-year cohort of 323 506 infants who were born in Massachusetts between February 1, 1999, and February 1, 2003, and screened for CF at approximately 2 days of age was studied. RESULTS: A total of 110 of 112 CF-affected infants screened (negative predictive value: 99.99%) were detected with IRT/multiple-CFTR-mutation screening; 2 false-negative screens did not show elevated IRT. A total of 107 (97%) of the 110 had 1 or 2 mutations detected by the multiple- CFTR-mutation screen, and 3 had positive screens on the basis of the failsafe protocol. In contrast, had we used single-mutation testing, only 96 (87%) of the 110 would have had 1 or 2 mutations detectable by single-mutation screen, 8 would have had positive screens on the basis of the failsafe protocol, and an additional 6 infants would have had false-negative screens. Among 110 CF-affected screened-positive infants, a likely genetic diagnosis was made by the multiple-CFTR-mutation screen in 82 (75%) versus 55 (50%) with DeltaF508 alone. Increased sensitivity from multiple-CFTR-mutation testing yielded 274 (26%) more referrals for sweat testing and carrier identifications than testing with DeltaF508 alone. CONCLUSIONS: Use of multiple-CFTR-mutation testing improved sensitivity and postscreening prediction of CF at the cost of increased referrals and carrier identification

    Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium

    No full text
    A phase I clinical trial was conducted in which recombinant adenovirus containing the cystic fibrosis trans-membrane regulator (CFTR) (Ad2/CFTR) was administered by bronchoscopic instillation or aerosolization to the lungs of cystic fibrosis (CF) patients. In this paper, we evaluate the efficiency of Ad2/CFTR-mediated transduction of bronchial airway cells. The ability of an Ad2/CFTR vector to transduce airway cells was first evaluated in patients to whom the vector was administered by bronchoscopic instillation. Cells at the administration site were collected 2 days after treatment by bronchoscopic brushing. Ad2-specific CFTR DNA was detected in four of five individuals by PCR, and Ad2-specific CFTR RNA was detected in three of five individuals by RT-PCR. Ad2/CFTR-mediated transduction of airway epithelial cells was then determined in CF individuals receiving this vector by aerosol inhalation. Ad2-specific CFTR DNA was detected in 13 of 13 individuals 2 days after aerosolization, and in 3 of 5 individuals 7 days after aerosolization. Ad2-specific RNA was detected in 4 of 13 individuals on day 2, but was not detected in the 5 individuals tested on day 7. The percentage of airway epithelial cells containing nuclear-localized vector DNA was \u3c or =2.4% as determined by fluorescence in situ hybridization (FISH). However, in some cases, a high percentage of nonepithelial mononuclear cells or squamous metaplastic epithelial cells was infected with the adenoviral vector. In conclusion, aerosol administration is a feasible means to distribute adenoviral vectors throughout the conducting airways, but improvements in adenovirus-mediated transduction of airway epithelial cells are necessary before gene therapy for CF will be effective
    corecore