606 research outputs found

    Environmental planning for an Alaskan water-oriented recreational area

    Get PDF
    Completion Report OWRT Agreement No. 14-31-0001-4056 Project No. B-026-ALASThis research focused initially on delineation of the proper procedures to be applied when the state of Alaska, through the appropriate agencies, selects and develops water-based recreation areas. The Nancy Lakes recreational area was selected as a case study for testing these procedures. This area is located approximately 106 km (66 road miles) northwest of Anchorage along the Parks Highway (61°N,150°W). When the research was begun in July of 1973, this area was determined to be important to the future recreational needs of the residents of the growing municipality of Anchorage as well as to travelers between Fairbanks and Anchorage along the newly opened highway. Today, this area is even more important as the new capital of the state of Alaska will be located approximately 6 km (4 miles) east of Nancy Lakes. In the summer of 1974, difficulties arose concerning the objectives of the project and the reports to be generated. Therefore, a decision was made to terminate the research at Nancy Lakes. A partial completion report was compiled concerning the work completed to September 1, 1974. This report was distributed to cooperators at the State of Alaska, Department of Natural Resources, Division of Parks; the Sport Fish Division of Alaska Department of Fish and Game, Palmer; and to the Office of Water Resources Research, the predecessor of the Office of Water Research and Technology. The research has continued, focusing on the Tanana Lakes near Fairbanks, Alaska, (64°N,146°N) with the cooperation of the Sport Fish Division of the Alaska Department of Fish and Game, Fairbanks. These lakes, located within 160 km (100 miles) of Fairbanks, are important to the residents of Fairbanks, as well as to tourists driving to Fairbanks from the 48 continguous states. Many Fairbanks residents have cottages at one of the three largest of these, Harding, Birch, and Quartz Lakes. Several youth groups have summer camps on these lakes; the U. S. Army and the U. S. Air Force are currently sharing an extensive recreation facility at Birch Lake; and the state park at Harding Lake is one of the state's most utilized campgrounds. The research on this lake group has focused on the variation in productivity between these lakes due to differences in lake morphometry and watershed characteristics, with some attempt to assess recreational impacts on their water quality.The work upon which this completion report is based was supported by funds provided by the U. S. Department of Interior, Office of Water Research and Technology as authorized under the Water Resources Research Act of 1964, Public Law 88-379, as amended. Matching funds were provided by the State of Alaska, Department of Natural Resources, Division of Parks; and Department of Fish and Game, Sport Fish Division

    A Survey of Lentic Waters with Respect to Dissolved and Particulate Lead

    Get PDF
    Some of the strongest temperature inversions in the world occur at Fairbanks, Alaska. Benson (1970) has reported that a temperature gradient of 10 to 30C/1OO m is common in the winter inversions that form at Fairbanks. Air pollution is especially severe during these inversions when it is accompanied by the formation of ice crystals in the air, a condition known as ice fog. This phenomenon occurs when the temperature drops below -20F (-35C) (Benson, 1970), and it intensifies with time if the inversion is not broken. The ice crystals in this fog have been found to adsorb dust and gasses, including the lead halides which are present in the air as a result of the combustion of tetraethyl lead and/or other lead-hydrocarbon compounds used as anti-knock additives in automotive gasoline. Lazrus et al. (1970) have found lead concentrations in precipitation to be highly significantly correlated with the amount of gasoline used in the area sampled. There are two factors that bring the concentration of lead to high levels in ice fogs. Evaporation of the ice crystals tends to concentrate pollutants in the air mass, especially over the core area of the city where precipitation is retarded by the heating effect of the city. Also, during the extreme cold weather accompanying this phenomenon, many people allow their cars to idle when they are parked to increase performance and for reasons of personal comfort. Eventually, much of the pollutants suspended in the ice fog is precipitated and causes unnaturally high levels of lead in the snow. (Winchester et al., 1967). It is suspected that some of this particulate lead collected in the snow may be carried along with the associated surface runoff into 1entic (standing) surface waters during thawing. The objectives of this project were: 1. to measure the amount of dissolved and particulate lead in a number of selected 1entic waters in the Fairbanks area, and 2. to measure the amount of lead that has been incorporated into net plankton organisms located in the selected lentic waters.The work upon which this report is based was supported by funds (Project A-035-ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended

    Nutrient chemistry of a large, deep lake in subarctic Alaska

    Get PDF
    Project Officer Eldor W. Schallock Assessment and Criteria Development Division Corvallis Environmental Research Laboratory Corvallis, Oregon 97330;Corvallis Environmental Research Laboratory Office of Research and Development U. S. Environmental Protection Agency Corvallis, Oregon 97330; R800276The primary objective of this project was to assess the state of the water quality of Harding Lake, and to attempt to predict the effects of future development within its watershed. Since the major effect of degradation of water quality due to human activity is the promotion of nuisance growths of plants, the major emphasis was placed on measurements of plant growth and concentrations of the major nutrients they require. Planktonic algal growth was found to be low, below 95.6 gm/m2/year, and the growth of submerged rooted plants was found to be relatively less important at approximately 1.35 gm/m2/year. Measurements of the growth of attached algae were not conducted, therefore the relative importance of their growth is currently unknown. A model for predicting the effect of future real estate development in the watershed was modified and applied to this lake. This model adequately describes current water quality conditions, and is assumed to have some predictive ability, but several cautions concerning application of this model to Harding Lake are discussed. A secondary objective was to study the thermal regime of a deep subarctic lake. Intensive water temperature measurements were made throughout one year and less intensive measurements were conducted during two additional years. The possibility that this lake may occasionally stratify thermally under the ice and not mix completely in the spring was discovered. The implications of this possibility are discussed for management of subarctic lakes. Hydrologic and energy budgets of this lake are attempted; the annual heat budget is estimated at 1.96 x 104 ± 1.7 x 103 cal/cm2. The results of a study of domestic water supply and waste disposal alternatives in the watershed, and the potential for enteric bacterial contamination of the lake water are presented. Limited work on the zooplankton, fishes, and benthic macroinvertebrates of this lake is also presented

    Evaluation of the trophic types of several Alaskan lakes by assessment of the benthic fauna

    Get PDF
    Public Law 92-500 (1972) which amends the Federal Water Pollution Control Act contains Section No. 314 entitled Clean Lakes which gives each state a mandate to "... prepare or establish ... an identification and classification according to eutrophic condition of all publicly owned fresh water lakes in such state . . . ." This mandate presents an awesome task to the State of Alaska which contains millions of lakes which must be evaluated according to the interpretation of this law. It was the intent of this project to examine the application of a biological index of eutrophy to several Alaskan lakes by comparing benthic macroinvertebrate faunal distribution to selected chemical and physical indices of trophic state. The investigator chose to consider "indicator organisms" as the focus of the study and found this concept to be interestingly difficult to apply.The work upon which this report is based was supported in part by funds (A-046-ALAS) provided by the United States Department of the Interior, Office of Water Research and Technology, as authorized under the Water Resources Act of 1964, as amended

    Triply Filiated: Lestat and the Three Fathers

    Get PDF

    Laboratory Rearing Experiments on Artificially Propagated Inconnu (Stenodus leucichthys)

    Get PDF
    The work upon which this report is based was supported by the State of Alaska through the University of Alaska in cooperation with a project supported in part by funds (Proj. A-041-ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources act of 1964, as amended

    Immunological Changes after Cancer Treatment and Participation in an Exercise Program

    Get PDF
    Purpose: The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on T-cell number and function, and to determine the role of a mixed type, moderate intensity exercise program in facilitating the recovery of T-cell number and function. Methods: Immunological measures of white blood cell, lymphocyte, CD3+, CD4+, and CD8+ counts, and CD3+ cell function were assessed pretransplant (PI), immediately posttransplant (PII), and 1 month (I1), 2 months (I2) and 3 months (PIII) posttransplant. After PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). Results: Lower total T-cell, helper T-cell, and suppressor T-cell counts (P < 0.01), as well as lower T-cell function (P < 0.01), when compared with normative data, were found at PI. More specifically, 88% of the group had CD3+, CD4+, and CD8+ counts that were more than 40%, 20%, and 50% below normal at PI, respectively. Undertaking a PBST caused further adverse changes to the total leukocyte, lymphocyte, CD3+, CD4+ and CD8+ count, and the helper/suppressor ratio. Although CD8+ counts had returned to normal by PIII, CD3+, CD4+, and the CD4+/CD8+ ratio remained significantly lower than normative data (P < 0.01), with 66%, 100%, and 100% of the subject group reporting counts and ratios, respectively, below the normal range. Conclusion: The PBST patients were immunocompromised before undertaking the transplant, and the transplant procedure imposed further adverse changes to the leukocyte and lymphocyte counts. The leukocyte and CD8+ counts returned to normal within 3 months posttransplant; however, the other immunological parameters assessed demonstrated a delayed recovery. Although participation in the exercise program did not facilitate a faster immune cell recovery, neither did the exercise program hinder or delay recovery
    • …
    corecore