81 research outputs found

    Modeling of IT-SOFC with indirect internal reforming operation fueled by methane:Effect of oxygen adding as autothermal reforming

    Full text link
    Mathematical models of an Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) with indirect internal reforming operation (IIR-SOFC) fueled by methane were developed. The models were based on a steady-state heterogeneous two-dimensional tubular-design SOFC. The benefit in adding oxygen to methane and steam as the feed for autothermal reforming reaction on the thermal behavior and SOFC performance was simulated. The results indicated that smoother temperature gradient with lower local cooling at the entrance of the reformer channel can be achieved by adding a small amount of oxygen. However, the electrical efficiency noticeably decreased when too high oxygen content was added due to the loss of hydrogen generation from the oxidation reaction; hence, the inlet oxygen to carbon (O/C) molar ratio must be carefully controlled. Another benefit of adding oxygen is the reduction of excess steam requirement, which could reduce the quantity of heat required to generate the steam and eventually increases the overall system performance. It was also found that the operating temperature strongly affects the electrical efficiency achievement and temperature distribution along the SOFC system. By increasing the operating temperature, the system efficiency increases but a significant temperature gradient is also detected. The system with a counter-flow pattern was compared to that with a co-flow pattern. The co-flow pattern provided smoother temperature gradient along the system due to better matching between the heat supplied from the electrochemical reaction and the heat required for the steam reforming reaction. However, the electrical efficiency of the co-flow pattern is lower due to the higher cell polarization at a lower system temperature. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.</p

    Modeling of IT-SOFC with indirect internal reforming operation fueled by methane:Effect of oxygen adding as autothermal reforming

    Full text link
    Mathematical models of an Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) with indirect internal reforming operation (IIR-SOFC) fueled by methane were developed. The models were based on a steady-state heterogeneous two-dimensional tubular-design SOFC. The benefit in adding oxygen to methane and steam as the feed for autothermal reforming reaction on the thermal behavior and SOFC performance was simulated. The results indicated that smoother temperature gradient with lower local cooling at the entrance of the reformer channel can be achieved by adding a small amount of oxygen. However, the electrical efficiency noticeably decreased when too high oxygen content was added due to the loss of hydrogen generation from the oxidation reaction; hence, the inlet oxygen to carbon (O/C) molar ratio must be carefully controlled. Another benefit of adding oxygen is the reduction of excess steam requirement, which could reduce the quantity of heat required to generate the steam and eventually increases the overall system performance. It was also found that the operating temperature strongly affects the electrical efficiency achievement and temperature distribution along the SOFC system. By increasing the operating temperature, the system efficiency increases but a significant temperature gradient is also detected. The system with a counter-flow pattern was compared to that with a co-flow pattern. The co-flow pattern provided smoother temperature gradient along the system due to better matching between the heat supplied from the electrochemical reaction and the heat required for the steam reforming reaction. However, the electrical efficiency of the co-flow pattern is lower due to the higher cell polarization at a lower system temperature. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.</p

    Catalytic Conversion of Organosolv Lignins to Phenolic Monomers in Different Organic Solvents and Effect of Operating Conditions on Yield with Methyl Isobutyl Ketone

    Full text link
    9 páginas.-- 8 figuras.-- 2 tablas.-- 35 referencias.-- The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.7b02721Catalytic depolymerization of organosolv lignin to phenolic monomers with zeolites was investigated under various operating conditions. H-USY (Si/Al molar ratio = 5) outperformed H-USY with Si/Al ratios of 50 and 250, H-BEA, H-ZSM5, and fumed SiO2 to produce the highest phenolic monomer yield from a commercial organosolv lignin in methanol at 300 °C for 1 h. It was then further investigated in the presence of acetone, ethyl acetate, methanol, and methyl isobutyl ketone (MIBK) on the depolymerization of organosolv bagasse lignin (BGL). The total highest phenolic monomer yield of 10.6 wt % was achieved with MIBK at 350 °C for 1 h with a catalyst loading of 10 wt %. A final total phenolic monomer yield of 19.4 wt % was obtained with an initial H2 pressure of 2 MPa under similar processing conditions. The main phenolic monomers obtained are guaiacol (7.9 wt %), 4-ethylphenol (6.0 wt %), and phenol (3.4 wt %). The solvent properties were used to account for the differences in phenolic monomer yields obtained with different organic solvents.The authors express their sincere appreciation to the Joint raduate School of Energy and Environment (JGSEE), Petchra Pra Jom Klao Doctoral Scholarship, King Mongkut’s University of Technology Thonburi (KMUTT), Thailand Research Fund (RTA5980006), and the Queensland University of Technology (QUT), Australia, for financing this project. The authors thank Dr. Jorge Rencoret and Dr. Ana Gutierrez, who were partly funded by the Spanish projects AGL2014-53730-R and CTQ2014-60764-JIN (cofinanced by FEDER funds), for PyGC/MS analysis of the lignins.Peer reviewe
    • …
    corecore