23 research outputs found
Investigation of 3D particle flow in a flighted rotating drum
[EN] o validate the particle motion in flighted rotating drum (FRD), a laboratory FRD was built and operated at 15% filling degree and 10 rpm rotation speed using plastic balls as bed material. The particle tracking velocimetry (PTV) and magnetic particle tracking (MPT) techniques were applied to investigate the particle flow behavior. The 3D particle flow was modeled by Discrete Element Method (DEM) with LIGGGHTS. The height of the barycenter of all overall particles and particle instantaneous velocity were calculated from PTV and DEM data. The 3D time-averaged particle velocity distributions obtained from MPT experiment and DEM simulation were compared.Zhang, L.; Weigler, F.; Jiang, Z.; Idakiev, V.; Mörl, L.; Mellmann, J.; Tsotsas, E. (2018). Investigation of 3D particle flow in a flighted rotating drum. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 253-260. https://doi.org/10.4995/IDS2018.2018.7389OCS25326
The Study on Numerical Simulation and Experiments of Four Product Hydrocyclone with Double Vortex Finders
A hydrocyclone is an instrument that can effectively separate multi-phase mixtures of particles with different densities or sizes based on centrifugal sedimentation principles. However, conventional hydrocyclones lead to two products only, resulting in an over-wide particle size range that does not meet the requirements of subsequent operations. In this article, a two-stage series, a four product hydrocyclone is proposed. The first stage hydrocyclone is designed to be a coaxial double overflow pipe: under the effect of separation, fine particles are discharged from the internal overflow pipe, while medium-size particles are discharged from external overflow pipe before entering the second stage hydrocyclone for fine sedimentation. In other words, one-stage grading leads to four products, including the first stage underflow, the first stage overflow, the second stage underflow, and the second stage overflow. The effects of structural parameters and operational parameters on flow field distribution in hydrocyclone were investigated via a study of flow field distribution in multi-product hydrocyclones using numerical simulations. The application of four product hydrocyclone in iron recovery shows that the grade and recovery of iron concentrate exceed 65.08% and 86.14%, respectively. This study provides references for understanding the flow field distribution in hydrocyclones and development of multi-product grading instrument in terms of both theory and industrial applications
Classification Performance of a Novel Hydraulic Classifier Equipped with a W-Shaped Reflector
In the present research, we propose the use of a novel hydraulic classifier equipped with a W-shaped reflector to enhance classification performance. The effects of the structural dimensions of a W-shaped reflector on the flow field of a classifier and its classification performance were investigated using numerical simulations and experiments. The results demonstrate that the reflection of the W-shaped reflector results in the return of the feed material back to the classification cavity. After this, the materials are mixed with a rising water flow in order to avoid the settlement of particles. Thus, the particles can stay longer in the classification cavity, facilitating the generation of a suspension bed and effectively improving the classification efficiency and accuracy. Our data indicates that the overall classification efficiency of the classifier embedded with the W-shaped reflector was 11.19% higher than that of a traditional classifier. Our results provide a reference for classifier optimization
The Effect of Inlet Velocity on the Separation Performance of a Two-Stage Hydrocyclone
The “entrainment of coarse particles in overflow„ and the “entrainment of fine particles in underflow„ are two inevitable phenomena in the hydrocyclone separation process, which can result in a wide product size distribution that does not meet the requirement of a precise classification. Hence, this study proposed a two-stage (TS) hydrocyclone, and the effects of the inlet velocity on the TS hydrocyclone were investigated using computational fluid dynamics (CFD). More specifically, the influences of the first-stage inlet velocity on the second-stage swirling flow field and the separation performance were studied. In addition, the particle size distribution of the product was analyzed. It was found that the first-stage overflow contained few coarse particles above 40 μm and that the second-stage underflow contained few fine particles. The second-stage underflow was free of particles smaller than 10 μm and almost free of particles smaller than 20 μm. The underflow product contained few fine particles. Moreover, the median particle size of the second-stage overflow product was similar to that of the feed. Inspired by this observation, we propose to recycle the second-stage overflow to the feed for re-classification and to use only the first-stage overflow and the second-stage underflow as products. In this way, fine particle products free of coarse particle entrainment, and coarse particle products free of fine particle entrainment can be obtained, achieving the goal of precise classification
Numerical Simulation of Flow Field Characteristics and Separation Performance Test of Multi-Product Hydrocyclone
A traditional hydrocyclone can only generate two products with different size fractions after one classification, which does not meet the fine classification requirements for narrow size fractions. In order to achieve the fine classification, a multi-product hydrocyclone with double-overflow-pipe structure was designed in this study. In this work, numerical simulation and experimental test methods were used to study the internal flow field characteristics and distribution characteristics of the product size fraction. The simulation results showed that in contrast with the traditional single overflow pipe, there were two turns in the internal axial velocity direction of the hydrocyclone with the double-overflow-pipe structure. Meanwhile, the influence rule of the diameter of the underflow outlet on the flow field characteristics was obtained through numerical simulation. From the test, five products with different size fractions were obtained after one classification and the influence rule of the diameter of the underflow outlet on the size fraction distribution of multi-products was also obtained. This work provides a feasible research idea for obtaining the fine classification of multiple products
Experimental Study on Flocculation Effect of Tangential Velocity in a Cone-Plate Clarifier
A large number of particles with small size and light density in mine water are difficult to remove by traditional separation equipment. In order to improve the efficiency of mine water treatment, a cone-plate clarifier is proposed in this paper. The particle size distribution and their fragmentation fractal dimension were studied in 15 sampling points of the cone-plate clarifier to elucidate the process of floc growth and settling. The influence of the tangential inlet velocity size distribution characteristics was also studied. The results showed that the cone-plate clarifier can effectively improve suspended solids and turbidity removal efficiency. The floc growth and settlement courses are shown in the charts. The cone-plate clarifier was divided into four zones: micro flocculation, floc growing, settlement, and exit pipe. Because the fluid enters the cone-plate clarifier tangentially, the value of the inlet velocity and the tangential velocity are equal at the inlet feed. With the increase in tangential velocity, the flocculation efficiency first increased and then decreased. Comprehensive analysis of the particle greater than 50 ÎĽm in the effluent showed that the optimal inlet was qual to 1.63 m/s. By fitting the equations, the optimal SS and turbidity removal efficiency reached the maximum values of 92.04% and 80.18% at the inlet velocity of 1.86 m/s and 1.77 m/s, respectively
Effect of Cone-Plate Clarifier Structure Parameters on Flocculation Efficiency
In this study, a coal mine water flocculation system was established. A series of flocculation tests were carried out at different structural parameters (cylinder height, cone-plate insertion depth and cone-plate spacing) to better investigate the effect of the cone-plate clarifier on coal mine water treatment performance. Sixteen sampling points were set up in the system for data monitoring to generate the required data. The cone-plate clarifier was divided into five zones for flocculation analysis. The increased cylinder height facilitated the flocculation of particles in the micro flocculation zone and the settling of particles in the settlement zone. The chemicals used are polyaluminum chloride (PACl), Fe3O4 and polyacrylamide (PAM), corresponding to doses of 60 mg/L, 40 mg/L and 6 mg/L, respectively. Insufficient insertion depth of the cone-plate will cause the small flocs that have not been fully flocculated to enter the exit pipe zone directly through the cone-plate, while too much insertion depth will cause the large floc in the settlement zone to re-enter the exit pipe zone. The flocculation effect of small flocs increased as the cone-plate spacing decreased, which is consistent with the shallow pool theory. When the cone plate spacing was too narrow, the amount of fluid was reduced and the increase in fluid velocity reduced the flocculation effect. Curve fitting was conducted for Suspended solids(SS) and turbidity removal efficiency under each structural parameter to derive the variation of SS and turbidity removal efficiency under different structural parameters. The regression models of SS and turbidity removal efficiency on the cylinder height, cone-plate insertion depth and cone-plate spacing were established based on the curve fitting results, and the regression models were verified to be well fitted based on the comparison of experimental results. Finally, the optimal values of SS and turbidity removal efficiency were found based on the regression model. The flow rate of the cone-plate clarifier is 0.6 m3/h. The SS removal efficiency reached 96.82% when the cylinder height was 708 mm, the cone-plate insertion depth was 367 mm and the cone-plate spacing was 26 mm. The turbidity removal efficiency reached 86.75% when the cylinder height was 709 mm, the cone-plate insertion depth was 369 mm and the cone-plate spacing was 26 mm
Study on the Desliming Performance of a Novel Hydrocyclone Sand Washer
A novel hydrocyclone sand washer featured by connecting a cylindrical hydrocyclone and a conical-cylindric hydrocyclone in series was developed to improve the poor grading performance in current machine-made sand processing technology. The former hydroycyclone with a flat bottom was designed to enhance the centrifugal intensity, thereby achieving the pre-grading of fine and coarse particles and ensuring the discharge of most fine mud particles from the overflow pipe. The latter hydrocyclone was designed to achieve the secondary fine separation and therefore reduce the content of fine particles in the underflow product. Firstly, the flow field inside the consecutive hydrocyclones was simulated using an RSM and VOF model. The DPM model was introduced to trace the particle motion trajectory and validate the feasibility of hydrocyclone separation. Then, the experimental study was performed using the control variable method, and the effects of the first-section overflow pipe diameter, the feeding rate, and the mud–sand mixing ratio on the desliming performance were examined. Results show that the content of particles with a diameter of below 75 μm in the second-section underflow drops significantly after the separation in the hydrocyclone sand washer. When the first-section overflow pipe diameter, the feeding rate, and the mud–sand mixing ratio are set to 34 mm, 60 kg/h and 1:1, respectively, the desliming rate of the novel hydrocyclone sand washer can reach 94.31% and the loss rate of quartz sand is only 1.28%