16 research outputs found
Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells
The Wnt/β-catenin signaling pathway is involved in the normal development of thyroid gland, but its disregulation provokes the appearance of several types of cancers, including papillary thyroid carcinomas (PTC) which are the most common thyroid tumours. The follow-up of PTC patients is based on the monitoring of serum thyroglobulin levels which is regulated by the thyroid transcription factor 1 (TTF-1): a tissue-specific transcription factor essential for the differentiation of the thyroid. We investigated whether the Wnt/β-catenin pathway might regulate TTF-1 expression in a human PTC model and examined the molecular mechanisms underlying this regulation. Immunofluorescence analysis, real time RT-PCR and Western blot studies revealed that TTF-1 as well as the major Wnt pathway components are co-expressed in TPC-1 cells and human PTC tumours. Knocking-down the Wnt/β-catenin components by siRNAs inhibited both TTF-1 transcript and protein expression, while mimicking the activation of Wnt signaling by lithium chloride induced TTF-1 gene and protein expression. Functional promoter studies and ChIP analysis showed that the Wnt/β-catenin pathway exerts its effect by means of the binding of β-catenin to TCF/LEF transcription factors on the level of an active TCF/LEF response element at [−798, −792 bp] in TTF-1 promoter. In conclusion, we demonstrated that the Wnt/β-catenin pathway is a direct and forward driver of the TTF-1 expression. The localization of TCF-4 and TTF-1 in the same area of PTC tissues might be of clinical relevance, and justifies further examination of these factors in the papillary thyroid cancers follow-up
Design of a low frequency, density profile reflectometer system for the MAST-U spherical tokamak
Validated and accurate edge profiles (temperature, density, etc.) are vitally important to the Mega Ampere Spherical Tokamak Upgrade (MAST-U) divertor and confinement effort. Density profile reflectometry has the potential to significantly add to the measurement capabilities currently available on MAST-U (e.g., Thomson scattering and Langmuir probes). This work presents the diagnostic requirements, problems, and solutions facing profile reflectometry in spherical tokamaks and MAST-U in particular. Requirements include density measurements near zero electron density in the scrape off layer region, coverage for a broad range of MAST-U plasma parameters, high time (≤10 microseconds) and spatial resolutions (≤1 cm), reliability, and identification of the plasma start frequency
EpCAM nuclear localization identifies aggressive Thyroid Cancer and is a marker for poor prognosis
<p>Abstract</p> <p>Background</p> <p>Proteolytic cleavage of the extracellular domain (EpEx) of Epithelial cell adhesion molecule (EpCAM) and nuclear signaling by its intracellular oncogenic domain Ep-ICD has recently been implicated in increased proliferation of cancer cells. The clinical significance of Ep-ICD in human tumors remains an enigma.</p> <p>Methods</p> <p>EpEx, Ep-ICD and β-catenin immunohistochemistry using specific antibodies was conducted on 58 archived thyroid cancer (TC) tissue blocks from 34 patients and correlated with survival analysis of these patients for up to 17 years.</p> <p>Results</p> <p>The anaplastic (ATC) and aggressive thyroid cancers showed loss of EpEx and increased nuclear and cytoplasmic accumulation of Ep-ICD. In contrast, the low grade papillary thyroid cancers (PTC) showed membranous EpEx and no detectable nuclear Ep-ICD. The ATC also showed concomitant nuclear expression of Ep-ICD and β-catenin. Kaplan-Meier Survival analysis revealed reduced overall survival (OS) for TC patients showing nuclear Ep-ICD expression or loss of membranous EpEx (p < 0.0004), median OS = 5 months as compared to 198 months for patients who did not show nuclear Ep-ICD or demonstrated only membranous EpE.</p> <p>Conclusion</p> <p>We report reciprocal loss of membrane EpEx but increased nuclear and cytoplasmic accumulation of Ep-ICD in aggressive TC; nuclear Ep-ICD correlated with poor OS of TC patients. Thus nuclear Ep-ICD localization may serve as a useful biomarker for aggressive TC and may represent a novel diagnostic, prognostic and therapeutic target for aggressive TC.</p
DIII-D research towards establishing the scientific basis for future fusion reactors
DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW