160 research outputs found

    Extracorporeal Immunoglobulin Elimination for the Treatment of Severe Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is a neuromuscular disorder leading to fluctuating muscle weakness and fatigue. Rarely, long-term stabilization is not possible through the use of thymectomy or any known drug therapy. We present our experience with extracorporeal immunoglobulin (Ig) elimination by immunoadsorption (adsorbers with human Ig antibodies). Acetylcholine receptor antibodies (AChRAs) were measured during long-term monitoring (4.7 ± 2.9 years; range 1.1–8.0). A total of 474 samples (232 pairs) were analyzed, and a drop in AChRA levels was observed (P = .025). The clinical status of patients improved and stabilized. Roughly 6.8% of patients experienced clinically irrelevant side effects. The method of Ig elimination by extracorporeal immunoadsorption (IA) is a clinical application of the recent biotechnological advances. It offers an effective and safe therapy for severe MG even when the disease is resistant to standard therapy

    Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys

    Get PDF
    Background: Worldwide implementation of risk-based cardiovascular disease (CVD) prevention requires risk prediction tools that are contemporarily recalibrated for the target country and can be used where laboratory measurements are unavailable. We present two cardiovascular risk scores, with and without laboratory-based measurements, and the corresponding risk charts for 182 countries to predict 10-year risk of fatal and non-fatal CVD in adults aged 40–74 years. Methods: Based on our previous laboratory-based prediction model (Globorisk), we used data from eight prospective studies to estimate coefficients of the risk equations using proportional hazard regressions. The laboratory-based risk score included age, sex, smoking, blood pressure, diabetes, and total cholesterol; in the non-laboratory (office-based) risk score, we replaced diabetes and total cholesterol with BMI. We recalibrated risk scores for each sex and age group in each country using country-specific mean risk factor levels and CVD rates. We used recalibrated risk scores and data from national surveys (using data from adults aged 40–64 years) to estimate the proportion of the population at different levels of CVD risk for ten countries from different world regions as examples of the information the risk scores provide; we applied a risk threshold for high risk of at least 10% for high-income countries (HICs) and at least 20% for low-income and middle-income countries (LMICs) on the basis of national and international guidelines for CVD prevention. We estimated the proportion of men and women who were similarly categorised as high risk or low risk by the two risk scores. Findings: Predicted risks for the same risk factor profile were generally lower in HICs than in LMICs, with the highest risks in countries in central and southeast Asia and eastern Europe, including China and Russia. In HICs, the proportion of people aged 40–64 years at high risk of CVD ranged from 1% for South Korean women to 42% for Czech men (using a ≥10% risk threshold), and in low-income countries ranged from 2% in Uganda (men and women) to 13% in Iranian men (using a ≥20% risk threshold). More than 80% of adults were similarly classified as low or high risk by the laboratory-based and office-based risk scores. However, the office-based model substantially underestimated the risk among patients with diabetes. Interpretation: Our risk charts provide risk assessment tools that are recalibrated for each country and make the estimation of CVD risk possible without using laboratory-based measurements

    Neonatal seizures in a rural Kenyan District Hospital: aetiology, Incidence and outcome of hospitalization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute seizures are common among children admitted to hospitals in resource poor countries. However, there is little data on the burden, causes and outcome of neonatal seizures in sub-Saharan Africa. We determined the minimum incidence, aetiology and immediate outcome of seizures among neonates admitted to a rural district hospital in Kenya.</p> <p>Methods</p> <p>From 1<sup>st </sup>January 2003 to 31<sup>st </sup>December 2007, we assessed for seizures all neonates (age 0-28 days) admitted to the Kilifi District Hospital, who were resident in a defined, regularly enumerated study area. The population denominator, the number of live births in the community on 1 July 2005 (the study midpoint) was modelled from the census data.</p> <p>Results</p> <p>Seizures were reported in 142/1572 (9.0%) of neonatal admissions. The incidence was 39.5 [95% confidence interval (CI) 26.4-56.7] per 1000 live-births and incidence increased with birth weight. The main diagnoses in neonates with seizures were sepsis in 85 (60%), neonatal encephalopathy in 30 (21%) and meningitis in 21 (15%), but only neonatal encephalopathy and bacterial meningitis were independently associated with seizures. Neonates with seizures had a longer hospitalization [median period 7 days - interquartile range (IQR) 4 to10] -compared to 5 days [IQR 3 to 8] for those without seizures, <it>P </it>= 0.02). Overall, there was no difference in inpatient case fatality between neonates with and without seizures but, when this outcome was stratified by birth weight, it was significantly higher in neonates ≥ 2.5 kg compared to low birth weight neonates [odds ratio 1.59 (95%CI 1.02 to 2.46), <it>P </it>= 0.037]. Up to 13% of the surviving newborn with seizures had neurological abnormalities at discharge.</p> <p>Conclusion</p> <p>There is a high incidence of neonatal seizures in this area of Kenya and the most important causes are neonatal encephalopathy and meningitis. The high incidence of neonatal seizures may be a reflection of the quality of the perinatal and postnatal care available to the neonates.</p

    Anthrax Toxins Inhibit Neutrophil Signaling Pathways in Brain Endothelium and Contribute to the Pathogenesis of Meningitis

    Get PDF
    Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies

    Bacillus anthracis Protease InhA Increases Blood-Brain Barrier Permeability and Contributes to Cerebral Hemorrhages

    Get PDF
    Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ΔinhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ΔinhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1

    Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    Get PDF
    Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein–Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein–Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential

    Multi-system neurological disease is common in patients with OPA1 mutations

    Get PDF
    Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal 'dominant optic atrophy plus' variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44-6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08-4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment

    Myasthenia gravis

    Get PDF
    Myasthenia gravis (MG) is a rare, autoimmune neuromuscular junction disorder. Contemporary prevalence rates approach 1/5,000. MG presents with painless, fluctuating, fatigable weakness involving specific muscle groups. Ocular weakness with asymmetric ptosis and binocular diplopia is the most typical initial presentation, while early or isolated oropharyngeal or limb weakness is less common. The course is variable, and most patients with initial ocular weakness develop bulbar or limb weakness within three years of initial symptom onset. MG results from antibody-mediated, T cell-dependent immunologic attack on the endplate region of the postsynaptic membrane. In patients with fatigable muscle weakness, the diagnosis of MG is supported by: 1. pharmacologic testing with edrophonium chloride that elicits unequivocal improvement in strength; 2. electrophysiologic testing with repetitive nerve stimulation (RNS) studies and/or single-fiber electromyography (SFEMG) that demonstrates a primary postsynaptic neuromuscular junctional disorder; and 3. serologic demonstration of acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) antibodies. Differential diagnosis includes congenital myasthenic syndromes, Lambert Eaton syndrome, botulism, organophosphate intoxication, mitochondrial disorders involving progressive external ophthalmoplegia, acute inflammatory demyelinating polyradiculoneuropathy (AIDP), motor neuron disease, and brainstem ischemia. Treatment must be individualized, and may include symptomatic treatment with cholinesterase inhibitors and immune modulation with corticosteroids, azathioprine, cyclosporine, and mycophenolate mofetil. Rapid, temporary improvement may be achieved for myasthenic crises and exacerbations with plasma exchange (PEX) or intravenous immunoglobulin (IVIg). Owing to improved diagnostic testing, immunotherapy, and intensive care, the contemporary prognosis is favorable with less than five percent mortality and nearly normal life expectancy
    corecore