192 research outputs found
The elastic depinning transition of vortex lattices in two dimensions
Large scale numerical simulations are used to study the elastic dynamics of
two-dimensional vortex lattices driven on a disordered medium in the case of
weak disorder. We investigate the so-called elastic depinning transition by
decreasing the driving force from the elastic dynamical regime to the state
pinned by the quenched disorder. Similarly to the plastic depinning transition,
we find results compatible with a second order phase transition, although both
depinning transitions are very different from many viewpoints. We evaluate
three critical exponents of the elastic depinning transition. is found for the velocity exponent at zero temperature, and from the
velocity-temperature curves we extract the critical exponent . Furthermore, in contrast with charge-density waves, a
finite-size scaling analysis suggests the existence of a unique diverging
length at the depinning threshold with an exponent , which
controls the critical force distribution, the finite-size crossover force
distribution and the intrinsic correlation length. Finally, a scaling relation
is found between velocity and temperature with the and
critical exponents both independent with regard to pinning strength and
disorder realizations.Comment: 17 pages, 10 figure
Induced Anticlinic Ordering and Nanophase Segregation of Bow-Shaped Molecules in a Smectic Solvent
Recent experiments indicate that doping low concentrations of bent-core
molecules into calamitic smectic solvents can induce anticlinic and biaxial
smectic phases. We have carried out Monte Carlo (MC) simulations of mixtures of
rodlike molecules (hard spherocylinders with length/breadth ratio ) and bow- or banana-shaped molecules (hard spherocylinder dimers
with length/breadth ratio or 2.5 and opening angle ) to
probe the molecular-scale organization and phase behavior of rod/banana
mixtures. We find that a low concentration (3%) of dimers
induces anticlinic (SmC) ordering in an untilted smectic (SmA) phase for
. For smaller , half of each bow-shaped
molecule is nanophase segregated between smectic layers, and the smectic layers
are untilted. For , no tilted phases are induced. However,
with decreasing we observe a sharp transition from {\sl intralamellar}
nanophase segregation (bow-shaped molecules segregated within smectic layers)
to {\sl interlamellar} nanophase segregation (bow-shaped molecules concentrated
between smectic layers) near . These results demonstrate that
purely entropic effects can lead to surprisingly complex behavior in rod/banana
mixtures.Comment: 5 pages Revtex, 7 postscript figure
Standardized approach to extract candidate outcomes from literature for a standard outcome set:a case- and simulation study
Aims: Standard outcome sets enable the value-based evaluation of health care delivery. Whereas the attainment of expert opinion has been structured using methods such as the modified-Delphi process, standardized guidelines for extraction of candidate outcomes from literature are lacking. As such, we aimed to describe an approach to obtain a comprehensive list of candidate outcomes for potential inclusion in standard outcome sets. Methods: This study describes an iterative saturation approach, using randomly selected batches from a systematic literature search to develop a long list of candidate outcomes to evaluate healthcare. This approach can be preceded with an optional benchmark review of relevant registries and Clinical Practice Guidelines and data visualization techniques (e.g. as a WordCloud) to potentially decrease the number of iterations. The development of the International Consortium of Health Outcome Measures Heart valve disease set is used to illustrate the approach. Batch cutoff choices of the iterative saturation approach were validated using data of 1000 simulated cases. Results: Simulation showed that on average 98% (range 92â100%) saturation is reached using a 100-article batch initially, with 25 articles in the subsequent batches. On average 4.7 repeating rounds (range 1â9) of 25 new articles were necessary to achieve saturation if no outcomes are first identified from a benchmark review or a data visualization. Conclusion: In this paper a standardized approach is proposed to identify relevant candidate outcomes for a standard outcome set. This approach creates a balance between comprehensiveness and feasibility in conducting literature reviews for the identification of candidate outcomes.</p
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
It has long been recognized that aortic root elasticity helps to ensure
efficient aortic valve closure, but our understanding of the functional
importance of the elasticity and geometry of the aortic root continues to
evolve as increasingly detailed in vivo imaging data become available. Herein,
we describe fluid-structure interaction models of the aortic root, including
the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the
sinotubular junction, that employ a version of Peskin's immersed boundary (IB)
method with a finite element (FE) description of the structural elasticity. We
develop both an idealized model of the root with three-fold symmetry of the
aortic sinuses and valve leaflets, and a more realistic model that accounts for
the differences in the sizes of the left, right, and noncoronary sinuses and
corresponding valve cusps. As in earlier work, we use fiber-based models of the
valve leaflets, but this study extends earlier IB models of the aortic root by
employing incompressible hyperelastic models of the mechanics of the sinuses
and ascending aorta using a constitutive law fit to experimental data from
human aortic root tissue. In vivo pressure loading is accounted for by a
backwards displacement method that determines the unloaded configurations of
the root models. Our models yield realistic cardiac output at physiological
pressures, with low transvalvular pressure differences during forward flow,
minimal regurgitation during valve closure, and realistic pressure loads when
the valve is closed during diastole. Further, results from high-resolution
computations demonstrate that IB models of the aortic valve are able to produce
essentially grid-converged dynamics at practical grid spacings for the
high-Reynolds number flows of the aortic root
A project for future lifeâSwedish women's thoughts on childbearing lacking experience of giving birth and parenthood
A lifeworld hermeneutic approach was used in order to understand Swedish women's thoughts on childbearing. Nine women were interviewed, and they ranged in age from 22 to 28 years and represented diverse socioeconomic, educational, sexual, and fertility backgrounds. All women were similar in that they lacked experience of giving birth and parenthood. The analysis showed that childbearing includes dimensions of both immanence and transcendence. Immanence, as childbearing is seen as stagnant to women's freedom in present life. Transcendence, as childbearing is thought of as a project for future life, a part of female identity, and a conscious standpoint for which the woman wants to be prepared and for which she wants to create the best conditions
Semen cryopreservation, utilisation and reproductive outcome in men treated for Hodgkin's disease
Between 1978 and 1990, 122 men underwent semen analysis before starting sterilising chemotherapy for Hodgkin's disease. Eighty-one (66%) had semen quality within the normal range, 25 were oligospermic (<20Ă106 sperm per ml) and five were azoospermic (no sperm in the ejaculate). Semen from 115 men was cryopreserved and after a median follow-up time of 10.1 years, 33 men have utilised stored semen (actuarial rate 27%) and nine partners have become pregnant resulting in 11 live births and one termination for foetal malformation. Actuarial 10 year rates of destruction of semen before death or utilisation and death before utilisation are 19% and 13% respectively. This retrospective cohort study demonstrates that approximately one-quarter of men utilising cryopreserved semen after treatment for Hodgkin's disease obtain a live birth. The high non-utilisation rate is intriguing and warrants further investigation
Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography
Cardiac pulsatility and aortic compliance may result in aortic area and diameter changes throughout the cardiac cycle in the entire aorta. Until this moment these dynamic changes could never be established in the aortic root (aortic annulus, sinuses of Valsalva and sinotubular junction). The aim of this study was to visualize and characterize the changes in aortic root dimensions during systole and diastole with ECG-gated multidetector row computed tomography (MDCT). MDCT scans of subjects without aortic root disease were analyzed. Retrospectively, ECG-gated reconstructions at each 10% of the cardiac cycle were made and analyzed during systole (30â40%) and diastole (70â75%). Axial planes were reconstructed at three different levels of the aortic root. At each level the maximal and its perpendicular luminal dimension were measured. The mean dimensions of the total study group (n = 108, mean age 56 ± 13 years) do not show any significant difference between systole and diastole. The individual dimensions vary up to 5 mm. However, the differences range between minus 5 mm (diastolic dimension is greater than systolic dimensions) and 5 mm (vice versa). This variability is independent of gender, age, height and weight. This study demonstrated a significant individual dynamic change in the dimensions of the aortic root. These results are highly unpredictable. Most of the healthy subjects have larger systolic dimensions, however, some do have larger diastolic dimensions
- âŠ