11 research outputs found

    Patterns of Children’s Blood Lead Screening and Blood Lead Levels in North Carolina, 2011–2018—Who Is Tested, Who Is Missed?

    Get PDF
    BACKGROUND: No safe level of lead in blood has been identified. Blood lead testing is required for children on Medicaid, but it is at the discretion of providers and parents for others. Elevated blood lead levels (EBLLs) cannot be identified in children who are not tested. OBJECTIVES: The aims of this research were to identify determinants of lead testing and EBLLs among North Carolina children and estimate the number of additional children with EBLLs among those not tested. METHODS: We linked geocoded North Carolina birth certificates from 2011–2016 to 2010 U.S. Census data and North Carolina blood lead test results from 2011–2018. We estimated the probability of being screened for lead and created inverse probability (IP) of testing weights. We evaluated the risk of an EBLL of ≄3 lg=dL at <30 months of age, conditional on characteristics at birth, using generalized linear models and then applied IP weights to account for missing blood lead results among unscreened children. We estimated the number of additional children with EBLLs of all North Carolina children using the IP-weighted population and bootstrapping to produce 95% credible intervals (CrI). RESULTS: Mothers of the 63.5% of children (402,002 of 633,159) linked to a blood lead test result were disproportionately young, Hispanic, Black, American Indian, or on Medicaid. In full models, maternal age ≀20 y [risk ratio Ă°RRÞ = 1:10; 95% confidence interval (CI): 1.13, 1.20] or smoking (RR = 1.14; 95% CI: 1.12, 1.17); proximity to a major roadway (RR = 1.10; 95% CI: 1.05, 1.15); proximity to a lead-releasing Toxics Release Inventory site (RR = 1.08; 95% CI: 1.03, 1.14) or a National Emissions Inventory site (RR = 1.11; 95% CI: 1.07, 1.14); and living in neighborhoods with more housing built before 1950 (RR = 1.10; 95% CI: 1.05, 1.14) or before 1940 (RR = 1.18; 95% CI: 1.11, 1.25) or more vacant housing (RR = 1.14; 95% CI: 1.11, 1.17) were associated with an increased risk of EBLL, whereas overlap with a public water service system was associated with a decreased risk of EBLL (RR = 0.85; 95% CI: 0.83, 0.87). Children of Black mothers were no more likely than children of White mothers to have EBLLs (RR = 0.98; 95% CI: 0.96, 1.01). Complete blood lead screening in 2011–2018 may have identified an additional 17,543 (95% CrI: 17,462, 17,650) children with EBLLs ≄3 lg=dL. DISCUSSION: Our results indicate that current North Carolina lead screening strategies fail to identify over 30% (17,543 of 57,398) of children with subclinical lead poisoning and that accounting for characteristics at birth alters the conclusions about racial disparities in children’s EBLLs

    Response to “Comment on ‘optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology’”

    Get PDF
    We appreciate the opportunity to respond to the letter from Stahlhut et al. regarding our Brief Communication. We stressed the importance of biospecimen integrity and the potential danger of unrecognized contamination of convenience samples, particularly with ubiquitous environmental chemicals such as bisphenol A (BPA) and phthalates

    Associations between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts

    Get PDF
    Importance: Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective: To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants: Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures: Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures: Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results: The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance: Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery

    Project TENDR: Targeting environmental neuro-developmental risks. the TENDR consensus statement

    Get PDF
    Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential
    corecore