8 research outputs found
Development and manufacturing of SPO X-ray mirrors
The Silicon Pore Optics (SPO) technology has been established as a new type of X-ray optics enabling future X-ray observatories such as ATHENA. SPO is being developed at cosine together with the European Space Agency (ESA) and academic as well as industrial partners. The SPO modules are lightweight, yet stiff, high-resolution X-ray optics, allowing missions to reach a large effective area of several square meters. These properties of the optics are mainly linked to the mirror plates consisting of mono-crystalline silicon. Silicon is rigid, has a relatively low density, a very good thermal conductivity and excellent surface finish, both in terms of figure and surface roughness. For Athena, a large number of mirror plates is required, around 100,000 for the nominal configuration. With the technology spin-in from the semiconductor industry, mass production processes can be employed to manufacture rectangular shapes SPO mirror plates in high quality, large quantity and at low cost. Within the last years, several aspects of the SPO mirror plate have been reviewed and undergone further developments in terms of effective area, intrinsic behavior of the mirror plates and mass production capability. In view of flight model production, a second source of mirror plates has been added in addition to the first plate supplier. The paper will provide an overview of most recent plate design, metrology and production developments
Silicon Pore Optics Mirror Module Production and Testing
Silicon Pore Optics (SPO) has been established as a new type of x-ray optics that enables future x-ray observatories such as Athena. SPO is being developed at cosine with the European Space Agency (ESA) and academic and industrial partners. The optics modules are lightweight, yet stiff, high-resolution x-ray optics, that shall allow missions to reach an unprecedentedly large effective area of several square meters, operating in the 0.2 - 12 keV band with an angular resolution better than 5 arc seconds. In this paper we are going to discuss the latest generation production facilities and we are going to present results of the production of mirror modules for a focal length of 12 m, including x-ray test results
High-resolution and light-weight silicon pore x-ray optics
Silicon Pore Optics (SPO) have been invented and developed to enable x-ray optics for space applications that require a combination of high angular resolution while being light-weight to allow achieving a large mirror surface area. In 2005, the SPO technology development was initiated by the European Space Agency (ESA) for a flagship x-ray telescope mission and is currently being planned as a baseline for the NewATHENA mission scheduled for launch in the 2030s. Its more than 2m diameter mirror will be segmented and comprises of 492 individual Silicon Pore Optics (SPO) grazing-angle imagers, called mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of primary-secondary mirror pairs, each mirror made of silicon, coated to increase the collective area of the system, and shaped to bring the incoming photons to a common focus in 12 m distance. The mission aims to deliver an angular resolution of better than nine arc-seconds (Half-energy width) and effective area of about 1.1 m2 at an energy of 1 keV. We present in this paper the status of the optics production and illustrate not only recent x-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics