28 research outputs found

    Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    Full text link
    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 {\mu}m to 50 {\mu}m, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 {\mu}m (~{\lambda}/38) can be realized.Comment: 10 pages, 7 figure

    Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities

    No full text
    This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth on (x,y), an existence result of odd 2π-periodic solutions is obtained via Leray-Schauder fixed point theorem

    Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities

    No full text
    This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth on (x,y), an existence result of odd 2π-periodic solutions is obtained via Leray-Schauder fixed point theorem

    Carbon emission reduction and profit distribution mechanism of construction supply chain with fairness concern and cap-and-trade.

    No full text
    Fairness concern behavior is extremely common in social life, and many scholars are beginning to pay attention to this behavior. In this study, we investigate a two-echelon construction supply chain that consists of a general contractor and a subcontractor under cap-and-trade policy. We study the carbon emission reduction decisions and profit distribution mechanism in the construction supply chain with fairness concern and cap-and-trade. We use the Nash bargaining model to describe the fairness concerns of the construction supply chain members and use the co-opetition model to portray the profit distribution. We show that the fairness concern can impose an adverse influence on firms' profits and decrease the magnitude of their carbon emission reductions. The subcontractor's fairness concern causes greater losses to the construction supply chain's profit. We further demonstrate the impact of fairness concern on the optimal decisions of the general contractor and the subcontractor through numerical analysis

    Comparison of pathological characteristics between self-detected and screen-detected invasive breast cancers in Chinese women: a retrospective study

    No full text
    Background In China, there is insufficient evidence to support that screening programs can detect breast cancer earlier and improve outcomes compared with patient self-reporting. Therefore, we compared the pathological characteristics at diagnosis between self-detected and screen-detected cases of invasive breast cancer at our institution and determined whether these characteristics were different after the program’s introduction (vs. prior to). Methods Three databases were selected (breast cancer diagnosed in 1995–2000, 2010, and 2015), which provided a total of 3,014 female patients with invasive breast cancer. The cases were divided into self-detected and screen-detected groups. The pathological characteristics were compared between the two groups and multiple imputation and complete randomized imputation were used to deal with missing data. Results Compared with patient self-reporting, screening was associated with the following factors: a higher percentage of stage T1 tumors (75.0% vs 17.1%, P = 0.109 in 1995–2000; 66.7% vs 40.4%, P < 0.001 in 2010; 67.8% vs 35.7%, P < 0.001 in 2015); a higher percentage of tumors with stage N0 lymph node status (67.3% vs. 48.4%, P = 0.007 in 2010); and a higher percentage of histologic grade I tumors (22.9% vs 13.9%, P = 0.017 in 2010). Conclusion Screen-detected breast cancer was associated with a greater number of favorable pathological characteristics. However, although screening had a beneficial role in early detection in China, we found fewer patients were detected by screening in this study compared with those in Western and Asian developed countries

    Effects of Dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial.

    No full text
    BackgroundWe hypothesized that the addition of dexmedetomidine in a clinically relevant dose to propofol-remifentanil anesthesia regimen does not exert an adverse effect on motor-evoked potentials (MEP) and somatosensory-evoked potentials (SSEP) in adult patients undergoing thoracic spinal cord tumor resection.MethodsSeventy-one adult patients were randomized into three groups. Propofol group (n = 25): propofol-remifentanil regimenand the dosage was adjusted to maintain the bispectral index (BIS) between 40 and 50. DP adjusted group (n = 23): Dexmedetomidine (0.5&nbsp;μg/kg loading dose infused over 10&nbsp;min followed by a constant infusion of 0.5&nbsp;μg/kg/h) was added to the propofol-remifentanil regimen and propofol was adjusted to maintain BIS between 40 and 50. DP unadjusted group (n = 23): Dexmedetomidine (administer as DP adjusted group) was added to the propofol-remifentanil regimen and propofol was not adjusted. All patients received MEP, SSEP and BIS monitoring.ResultsThere were no significant changes in the amplitude and latency of MEP and SSEP among different groups (P &gt; 0.05). The estimated propofol plasma concentration in DP adjusted group (2.7 ± 0.3&nbsp;μg/ml) was significantly lower than in propofol group (3.1 ± 0.2&nbsp;μg/ml) and DP unadjusted group (3.1 ± 0.2&nbsp;μg/ml) (P = 0.000). BIS in DP unadjusted group (35 ± 5) was significantly lower than in propofol group (44 ± 3) (P = 0.000).ConclusionsThe addition of dexmedetomidine to propofol-remifentanil regimen does not exert an adverse effect on MEP and SSEP monitoring in adult patients undergoing thoracic spinal cord tumor resection.Trial registrationThe study was registered with the Chinese Clinical Trial Registry on January 31st, 2014. The reference number was ChiCTR-TRC-14004229

    Detecting terahertz wave by microphone based on the photoacoustic effect in graphene foam

    No full text
    Terahertz (THz) wave plays important roles in the research of material properties, the non-invasive human security check and the next generation wireless communication. The progress of the scientific and technological applications of THz wave is strongly dependent on the improvement of THz detectors. Here a novel THz wave detection scheme is proposed in which the THz radiation is detected by an audible microphone based on the photo-thermo-acoustic (PTA) effect in graphene foam. Thanks to the room-temperature broadband electromagnetic absorption characteristics of graphene foam and the fast heat transfer between graphene foam and ambient air, this detection method not only inherits the advantages of the photo-thermal THz detector such as room-temperature and full bandwidth, but also has a response time 3 orders of magnitude faster than the photo-thermal detector. Besides, no micro-antenna/electrode is required to fabricate in the graphene foam THz detector which greatly simplifies the detector design and decreases the fabrication cost. It concludes that the room-temperature, full-bandwidth, fast-speed (≥10 kHz), and easy-to-fabricate THz detector developed in this work has superior comprehensive performances among both the commercial THz detectors and the detectors recently developed in laboratory

    Intrinsic Immunogenic Tumor Cell Death Subtypes Delineate Prognosis and Responsiveness to Immunotherapy in Lung Adenocarcinoma

    No full text
    Recent studies have highlighted the combination of activation of host immunogenic cell death (ICD) and tumor-directed cytotoxic strategies. However, overall multiomic analysis of the intrinsic ICD property in lung adenocarcinoma (LUAD) has not been performed. Therefore, the aim of this study was to develop an ICD-based risk scoring system to predict overall survival (OS) and immunotherapeutic efficacy in patients. In our study, both weighted gene co-expression network analysis (WGCNA) and LASSO-Cox analysis were utilized to identify ICDrisk subtypes (ICDrisk). Moreover, we identify genomic alterations and differences in biological processes, analyze the immune microenvironment, and predict the response to immunotherapy in patients with pan-cancer. Importantly, immunogenicity subgroup typing was performed based on the immune score (IS) and microenvironmental tumor neoantigens (meTNAs). Our results demonstrate that ICDrisk subtypes were identified based on 16 genes. Furthermore, high ICDrisk was proved to be a poor prognostic factor in LUAD patients and indicated poor efficacy of immune checkpoint inhibitor (ICI) treatment in patients with pan-cancer. The two ICDrisk subtypes displayed distinct clinicopathologic features, tumor-infiltrating immune cell patterns, and biological processes. The ISlowmeTNAhigh subtype showed low intratumoral heterogeneity (ITH) and immune-activated phenotypes and correlated with better survival than the other subtypes within the high ICDrisk group. This study suggests effective biomarkers for the prediction of OS in LUAD patients and immunotherapeutic response across Pan-cancer and contributes to enhancing our understanding of intrinsic immunogenic tumor cell death

    A Seabed Real-Time Sensing System for In-Situ Long-Term Multi-Parameter Observation Applications

    No full text
    Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the &ldquo;ARM + FPGA&rdquo; architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system

    Sensing with Femtosecond Laser Filamentation

    No full text
    Femtosecond laser filamentation is a unique nonlinear optical phenomenon when high-power ultrafast laser propagation in all transparent optical media. During filamentation in the atmosphere, the ultrastrong field of 1013–1014 W/cm2 with a large distance ranging from meter to kilometers can effectively ionize, break, and excite the molecules and fragments, resulting in characteristic fingerprint emissions, which provide a great opportunity for investigating strong-field molecules interaction in complicated environments, especially remote sensing. Additionally, the ultrastrong intensity inside the filament can damage almost all the detectors and ignite various intricate higher order nonlinear optical effects. These extreme physical conditions and complicated phenomena make the sensing and controlling of filamentation challenging. This paper mainly focuses on recent research advances in sensing with femtosecond laser filamentation, including fundamental physics, sensing and manipulating methods, typical filament-based sensing techniques and application scenarios, opportunities, and challenges toward the filament-based remote sensing under different complicated conditions
    corecore