120 research outputs found

    Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types

    Get PDF
    Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types

    Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia

    Get PDF
    Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia

    Divergent expression of claudin -1, -3, -4, -5 and -7 in developing human lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Claudins are the main components of tight junctions, structures which are associated with cell polarity and permeability. The aim of this study was to analyze the expression of claudins 1, 3, 4, 5, and 7 in developing human lung tissues from 12 to 40 weeks of gestation.</p> <p>Methods</p> <p>47 cases were analyzed by immunohistochemisty for claudins 1, 3, 4, 5 and 7. 23 cases were also investigated by quantitative RT-PCR for claudin-1, -3 and -4.</p> <p>Results</p> <p>Claudin-1 was expressed in epithelium of bronchi and large bronchioles from week 12 onwards but it was not detected in epithelium of developing alveoli. Claudin-3, -4 and -7 were strongly expressed in bronchial epithelium from week 12 to week 40, and they were also expressed in alveoli from week 16 to week 40. Claudin-5 was expressed strongly during all periods in endothelial cells. It was expressed also in epithelium of bronchi from week 12 to week 40, and in alveoli during the canalicular period. RT-PCR analyses revealed detectable amounts of RNAs for claudins 1, 3 and 4 in all cases studied.</p> <p>Conclusion</p> <p>Claudin-1, -3, -4, -5, and -7 are expressed in developing human lung from week 12 to week 40 with distinct locations and in divergent quantities. The expression of claudin-1 was restricted to the bronchial epithelium, whereas claudin-3, -4 and -7 were positive also in alveolar epithelium as well as in the bronchial epithelium. All claudins studied are linked to the development of airways, whereas claudin-3, -4, -5 and -7, but not claudin-1, are involved in the development of acinus and the differentiation of alveolar epithelial cells.</p

    The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis

    Get PDF
    BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDINGS: A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p=0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra. CONCLUSIONS: The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the "catecholaldehyde hypothesis" as an important link for the etiology of sporadic PD

    Interstitial lung disease in children - genetic background and associated phenotypes

    Get PDF
    Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice

    α-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease

    Full text link

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    LAG3 is not expressed in human and murine neurons and does not modulate α-synucleinopathies

    No full text
    While the initial pathology of Parkinson’s disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid
    corecore