36 research outputs found

    Generation of supraclusters and nanoclusters using laser desorption/ionisation mass spectrometry

    No full text
    Laser desorption/ionisation of discrete molecular clusters combined with time-of-flight (TOF) or Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry affords spectra in which extensive higher mass clusters are observed. The size of the largest cluster aggregates (or supraclusters) is of the same order of magnitude as nanoclusters. The spectra obtained using TOF mass spectrometry sometimes exhibit post-source decay fragmentation, depending upon the operational conditions employed during data acquisition, which, although providing useful data on the ligand dissociation dynamics, complicate spectral interpretation. Complementary FTICR mass spectra are free of such features. The identities of the supra/nanoclusters generated from the molecular cluster precursors have not been conclusively established but are mostly coordinatively unsaturated. Density functional molecular orbital calculations have identified the possible structures of the comparatively simple electronically unsaturated system, [Ru3(CO)6]-, that provides a clue to the aggregation mechanism

    Cdna Cloning of a Rat Small-Intestinal Na+/so42- Cotransporter

    No full text
    We have isolated a cDNA (ileal NaSi-1) from rat small intestine by homology screening with a cDNA (renal NaSi-1) encoding rat kidney cortex Na+-SO42- cotransport. Ileal NaSi-1 cRNA specifically stimulates Na+-dependent SO42- uptake in a time- and dose-depen dent manner in Xenopus laevis oocytes, with kinetic parameters almost identical to those of the renal NaSi-1. Ileal NaSi-1 cDNA contains 2722 base pairs (bp), almost 500bp more than the renal NaSi-1 cDNA; however, it encodes a protein of 595 amino acids identical to the renal NaSi-1 protein. Northern blot analysis shows strong signals in rat lower small intestine and kidney cortex (2.9 x 10(3) and 2.3 x 10(3) bases), with the ileal NaSi-1 corresponding to the longer transcript. We conclude that we have identified a rat ileal cDNA that encodes a membrane protein most likely involved in brush-border Na+-SO42- cotransport. It differs to the renal NaSi-1 only in the length of the 3' untranslated region, suggesting that the major difference lies in the differential use of polyadenylation signal

    Expression of Rat Ileal Na+-Sulfate Cotransport in Xenopus-Laevis Oocytes - Functional-Characterization

    No full text
    Small-intestinal sulphate absorption is a Na+-dependent process having its highest rate in the ileum; it involves brush-border membrane Na+-sulphate cotransport. Injection of rat ileal mRNA into Xenopus laevis oocytes induced Na+-dependent sulphate uptake in a dose-dependent manner, with no apparent effect on Na+-independent sulphate uptake. For mRNA-induced transport, the apparent K-m value for sulphate interaction was 0.6 +/- 0.2 mM and that for sodium interaction was 25 +/- 2 mM (Hill coefficient: 2.3 +/- 0.3). mRNA-induced transport, was inhibited by thiosulphate, but not by phosphate or 4,4,'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). Using a rat renal Nac-sulphate cotransporter cDNA as a probe [NaSi-1; Markovich et al. (1993) Proc Natl Acad Sci USA 90:8073 - 8077], the highest hybridization signals (2.3 kb and 2.9 kb) were obtained in size fractions showing the highest expression of Na+-dependent sulphate transport in oocytes. Hybrid depletion experiments using antisense oligonucleotides (from the NaSi-1 cDNA sequence), provided further evidence that rat small-intestinal (ileal) Na+-sulphate cotransport is closely related to rat proximal-tubular brush-border membrane Na+-sulphate cotranspor
    corecore