12 research outputs found

    Use of the Generalized Gradient Approximation in Pseudopotential Calculations of Solids

    Full text link
    We present a study of the equilibrium properties of spsp-bonded solids within the pseudopotential approach, employing recently proposed generalized gradient approximation (GGA) exchange correlation functionals. We analyze the effects of the gradient corrections on the behavior of the pseudopotentials and discuss possible approaches for constructing pseudopotentials self-consistently in the context of gradient corrected functionals. The calculated equilibrium properties of solids using the GGA functionals are compared to the ones obtained through the local density approximation (LDA) and to experimental data. A significant improvement over the LDA results is achieved with the use of the GGA functionals for cohesive energies. For the lattice constant, the same accuracy as in LDA can be obtained when the nonlinear coupling between core and valence electrons introduced by the exchange correlation functionals is properly taken into account. However, GGA functionals give bulk moduli that are too small compared to experiment.Comment: 15 pages, latex, no figure

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    Relationships Between Sequestration, Antigenic Variation and Chronic Parasitism in Plasmodium-Chabaudi-Chabaudi - a Rodent Malaria Model

    No full text
    We describe here a rodent malaria model using cloned lines of Plasmodium chabaudi chabaudi in inbred CBA/Ca mice that exhibits both clonal antigenic variation in late stage-specific surface antigens, and deep vascular schizogony in the liver. We show that both these features are modulated by the spleen, and that surface antigen expression is crucially involved in the sequestering phenotype. Surface antigens are variant in chronic infection, and host protective immune responses can distinguish between these variants. Splenectomy abolishes this difference. The acute infection with non-sequestering cloned lines is kinetically indistinguishable from sequestering clones, but parasites unable to express variant sequestration-associated antigen do not form a chronic recrudescing infection. Another clone, able to re-express this antigen in the presence of the spleen, undergoes typical chronic recrudescence. In this model, the biological significance of sequestration-associated variant antigen seems to enable the establishment of chronic infection in the presence of a primed spleen

    etramps, a New Plasmodium falciparum Gene Family Coding for Developmentally Regulated and Highly Charged Membrane Proteins Located at the Parasite–Host Cell Interface

    No full text
    After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole and develops from morphologically and metabolically distinct ring to trophozoite stages. During these developmental phases, major structural changes occur within the erythrocyte, but neither the molecular events governing this development nor the molecular composition of the parasitophorous vacuole membrane (PVM) is well known. Herein, we describe a new family of highly cationic proteins from P. falciparum termed early transcribed membrane proteins (ETRAMPs). Thirteen members were identified sharing a conserved structure, of which six were found only during ring stages as judged from Northern and Western analysis. Other members showed different stage-specific expression patterns. Furthermore, ETRAMPs were associated with the membrane fractions in Western blots, and colocalization and selective permeabilization studies demonstrated that ETRAMPs were located in the PVM. This was confirmed by immunoelectron microscopy where the PVM and tubovesicular extensions of the PVM were labeled. Early expressed ETRAMPs clearly defined separate PVM domains compared with the negatively charged integral PVM protein EXP-1, suggesting functionally different domains in the PVM with an oppositely charged surface coat. We also show that the dynamic change of ETRAMP composition in the PVM coincides with the morphological changes during development. The P. falciparum PVM is an important structure for parasite survival, and its analysis might provide better understanding of the requirements of intracellular parasites
    corecore