263 research outputs found

    On Artin's L-Functions

    Get PDF
    Paper by R. P. Langland

    Boundary states for a free boson defined on finite geometries

    Full text link
    Langlands recently constructed a map that factorizes the partition function of a free boson on a cylinder with boundary condition given by two arbitrary functions in the form of a scalar product of boundary states. We rewrite these boundary states in a compact form, getting rid of technical assumptions necessary in his construction. This simpler form allows us to show explicitly that the map between boundary conditions and states commutes with conformal transformations preserving the boundary and the reality condition on the scalar field.Comment: 16 pages, LaTeX (uses AMS components). Revised version; an analogy with string theory computations is discussed and references adde

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation

    Full text link
    Extensive Monte-Carlo simulations were performed to evaluate the excess number of clusters and the crossing probability function for three-dimensional percolation on the simple cubic (s.c.), face-centered cubic (f.c.c.), and body-centered cubic (b.c.c.) lattices. Systems L x L x L' with L' >> L were studied for both bond (s.c., f.c.c., b.c.c.) and site (f.c.c.) percolation. The excess number of clusters b~\tilde {b} per unit length was confirmed to be a universal quantity with a value b~0.412\tilde {b} \approx 0.412. Likewise, the critical crossing probability in the L' direction, with periodic boundary conditions in the L x L plane, was found to follow a universal exponential decay as a function of r = L'/L for large r. Simulations were also carried out to find new precise values of the critical thresholds for site percolation on the f.c.c. and b.c.c. lattices, yielding pc(f.c.c.)=0.1992365±0.0000010p_c(f.c.c.)= 0.199 236 5 \pm 0.000 001 0, pc(b.c.c.)=0.2459615±0.0000010p_c(b.c.c.)= 0.245 961 5\pm 0.000 001 0.Comment: 14 pages, 7 figures, LaTeX, submitted to J. Phys. A: Math. Gen, added references, corrected typo

    Universal crossing probability in anisotropic systems

    Full text link
    Scale-invariant universal crossing probabilities are studied for critical anisotropic systems in two dimensions. For weakly anisotropic standard percolation in a rectangular-shaped system, Cardy's exact formula is generalized using a length-rescaling procedure. For strongly anisotropic systems in 1+1 dimensions, exact results are obtained for the random walk with absorbing boundary conditions, which can be considered as a linearized mean-field approximation for directed percolation. The bond and site directed percolation problem is itself studied numerically via Monte Carlo simulations on the diagonal square lattice with either free or periodic boundary conditions. A scale-invariant critical crossing probability is still obtained, which is a universal function of the effective aspect ratio r_eff=c r where r=L/t^z, z is the dynamical exponent and c is a non-universal amplitude.Comment: 7 pages, 4 figure

    Conformal loop ensembles and the stress-energy tensor

    Full text link
    We give a construction of the stress-energy tensor of conformal field theory (CFT) as a local "object" in conformal loop ensembles CLE_\kappa, for all values of \kappa in the dilute regime 8/3 < \kappa <= 4 (corresponding to the central charges 0 < c <= 1, and including all CFT minimal models). We provide a quick introduction to CLE, a mathematical theory for random loops in simply connected domains with properties of conformal invariance, developed by Sheffield and Werner (2006). We consider its extension to more general regions of definition, and make various hypotheses that are needed for our construction and expected to hold for CLE in the dilute regime. Using this, we identify the stress-energy tensor in the context of CLE. This is done by deriving its associated conformal Ward identities for single insertions in CLE probability functions, along with the appropriate boundary conditions on simply connected domains; its properties under conformal maps, involving the Schwarzian derivative; and its one-point average in terms of the "relative partition function." Part of the construction is in the same spirit as, but widely generalizes, that found in the context of SLE_{8/3} by the author, Riva and Cardy (2006), which only dealt with the case of zero central charge in simply connected hyperbolic regions. We do not use the explicit construction of the CLE probability measure, but only its defining and expected general properties.Comment: 49 pages, 3 figures. This is a concatenated, reduced and simplified version of arXiv:0903.0372 and (especially) arXiv:0908.151

    Exact results at the 2-D percolation point

    Full text link
    We derive exact expressions for the excess number of clusters b and the excess cumulants b_n of a related quantity at the 2-D percolation point. High-accuracy computer simulations are in accord with our predictions. b is a finite-size correction to the Temperley-Lieb or Baxter-Temperley-Ashley formula for the number of clusters per site n_c in the infinite system limit; the bn correct bulk cumulants. b and b_n are universal, and thus depend only on the system's shape. Higher-order corrections show no apparent dependence on fractional powers of the system size.Comment: 12 pages, 2 figures, LaTeX, submitted to Physical Review Letter

    Dirac cohomology, elliptic representations and endoscopy

    Full text link
    The first part (Sections 1-6) of this paper is a survey of some of the recent developments in the theory of Dirac cohomology, especially the relationship of Dirac cohomology with (g,K)-cohomology and nilpotent Lie algebra cohomology; the second part (Sections 7-12) is devoted to understanding the unitary elliptic representations and endoscopic transfer by using the techniques in Dirac cohomology. A few problems and conjectures are proposed for further investigations.Comment: This paper will appear in `Representations of Reductive Groups, in Honor of 60th Birthday of David Vogan', edited by M. Nervins and P. Trapa, published by Springe
    corecore