161 research outputs found
Equivalent Circuit Microwave Modeling of Graphene-loaded Thick Films Using S-parameters
Graphene, a one-atom thick layer of carbon atoms arranged to form a honeycomb lattice, exhibits intriguing mechanical, thermal and electrical properties, which makes it attractive for bio- and chemical sensors as well as flexible electronics applications. In this paper, graphene films with different amounts of graphene loading (weight fraction 12.5% and 25%) deposited by screen printing technique are characterized in the microwave frequency range. By fitting the measured scattering parameters of graphene-loaded microstrip lines with Advanced Design System (ADS) circuit simulations, a simple equivalent lumped circuit model of the film is obtained. The proposed equivalent lumped circuit model presented in this paper proves suitable as an initial step towards the full-wave electromagnetic modeling and analysis of graphene loaded microwave structures intended for sensing and tuning applications
Surface plasmon enhanced photodetectors based on internal photoemission
Surface plasmon photodetectors are of broad interest. They are promising for several applications including telecommunications, photovoltaic solar cells, photocatalysis, color-sensitive detection, and sensing, as they can provide highly enhanced fields and strong confinement (to subwavelength scales). Such photodetectors typically combine a nanometallic structure that supports surface plasmons with a photodetection structure based on internal photoemission or electron-hole pair creation. Photodetector architectures are highly varied, including waveguides, gratings, nanoparticles, nanoislands, or nanoantennas. We review the operating principles behind surface plasmon photodetectors based on the internal photoelectric effect, and we survey and compare the most recent and leading edge concepts reported in the literature
Regional Practice Variation and Outcomes in the Standard Versus Accelerated Initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) Trial: A Post Hoc Secondary Analysis
OBJECTIVES: Among patients with severe acute kidney injury (AKI) admitted to the ICU in high-income countries, regional practice variations for fluid balance (FB) management, timing, and choice of renal replacement therapy (RRT) modality may be significant. DESIGN: Secondary post hoc analysis of the STandard vs. Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial (ClinicalTrials.gov number NCT02568722). SETTING: One hundred-fifty-three ICUs in 13 countries. PATIENTS: Altogether 2693 critically ill patients with AKI, of whom 994 were North American, 1143 European, and 556 from Australia and New Zealand (ANZ). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Total mean FB to a maximum of 14 days was +7199 mL in North America, +5641 mL in Europe, and +2211 mL in ANZ (p < 0.001). The median time to RRT initiation among patients allocated to the standard strategy was longest in Europe compared with North America and ANZ (p < 0.001; p < 0.001). Continuous RRT was the initial RRT modality in 60.8% of patients in North America and 56.8% of patients in Europe, compared with 96.4% of patients in ANZ (p < 0.001). After adjustment for predefined baseline characteristics, compared with North American and European patients, those in ANZ were more likely to survive to ICU (p < 0.001) and hospital discharge (p < 0.001) and to 90 days (for ANZ vs. Europe: risk difference [RD], -11.3%; 95% CI, -17.7% to -4.8%; p < 0.001 and for ANZ vs. North America: RD, -10.3%; 95% CI, -17.5% to -3.1%; p = 0.007). CONCLUSIONS: Among STARRT-AKI trial centers, significant regional practice variation exists regarding FB, timing of initiation of RRT, and initial use of continuous RRT. After adjustment, such practice variation was associated with lower ICU and hospital stay and 90-day mortality among ANZ patients compared with other regions
Laminated waveguide couplers in LTCC technology
A VWG can be used as a low loss transmission media in LTCC conditional to the via wall pitch being kept sufficiently low. The feasibility of implementing half-wavelength narrow wall VWG couplers in an LTCC environment has also been demonstrated. The limited results presented herein. suggest that the coupling factors for VWG couplers are similar to those of a regular narrow wall coupler implemented in standard RWG. The directivity maxima of the 2- and 3-aperture VWG couplers presented herein occur at similar frequencies to that of standard narrow wall couplers when the half wavelength coupling section is calculated using the RWG propagation constant
A Low-current amplifier for mobile radio and monolithic microwave integrated circuit design techniques in the UNF and L bands.
Analysis of Electrically Small Slot-Fed Substrate Lens Antennas Using the Physical Optics Hybrid Method
- …
