132 research outputs found

    Dimensional response analysis of bilinear systems subjected to non-pulselike earthquake ground motions

    Get PDF
    The maximum inelastic response of bilinear single-degree-of-freedom systems when subjected to ground motions without distinguishable pulses is revisited with dimensional analysis by identifying time scales and length scales in the time histories of recorded ground motions. The characteristic length scale is used to normalize the peak inelastic displacement of the bilinear system. The paper adopts the mean period of the Fourier transform of the ground motion as an appropriate time scale and examines two different length scales which result from the peak ground acceleration and the peak ground velocity. When the normalized peak inelastic displacement is presented as a function of the normalized strength and normalized yield displacement, the response becomes self similar and a clear pattern emerges. Accordingly, the paper proposes two alternative predictive master curves for the response which involve solely the strength and yield displacement of the bilinear SDOF system in association with either the peak ground acceleration or the peak ground velocity, together with the mean period of the Fourier transform of the ground motion. The regression coefficients that control the shape of the predictive master curves are based on 484 ground motions recorded at rock and stiff soil sites and are applicable to bilinear SDOF systems with post-yield stiffness ratio equal to 2% and inherent viscous damping ratio equal to 5%

    Biological similarity relative to allometric quantities

    No full text

    On a general method of vibration analysis in curvilinear coordinates

    No full text

    Quadrupedal landing gear systems for spacecraft

    No full text
    • …
    corecore