1,626 research outputs found
Acupuncture Point Localization Varies Among Acupuncturists
Background: Studies assessing the point-specific effect of acupuncture or the characteristics of acupuncture points (APs) tend to yield inconclusive results. In order to identify a possible confounding factor, we aimed to examine the variability in AP localization by means of a survey. Material and Methods: Attendees of the 14th ICMART (International Council of Medical Acupuncture and Related Techniques) congress as well as DAGfA (German Medical Society of Acupuncture) lecturers and students were asked to locate and mark the APs LI 10 and TH 5 on a research assistant's arm. Identified points were transferred into a coordinate system, and the respective bivariate distribution function was calculated. Additionally, participants filled out a questionnaire about their acupuncture education and experience, the acupuncture style and point localization techniques used most frequently, and their estimation of the size of an AP. Results: The areas of the ellipses, theoretically containing 95% of AP localizations, varied between 44.49 and 5.18 cm(2). The largest distance between 2 identified points was 8.45 cm for LI 10 and 5.3 cm for TH 5. Apart from being trained at the same school, no other factor could be identified that determined the variability in AP localization. Conclusion: Our results indicate that congruity of AP localization among experienced acupuncturists might be low. Although there are some limitations to our results, this possible bias should be taken into account when conducting acupuncture trials and interpreting results of previous acupuncture studies
The effect of Coulombic friction on spatial displacement statistics
The phenomenon of Coulombic friction enters the stochastic description of dry
friction between two solids and the statistic characterization of vibrating
granular media. Here we analyze the corresponding Fokker-Planck equation
including both velocity and spatial components, exhibiting a formal connection
to a quantum mechanical harmonic oscillator in the presence of a delta
potential. Numerical solutions for the resulting spatial displacement
statistics show a crossover from exponential to Gaussian displacement
statistics. We identify a transient intermediate regime that exhibits
multiscaling properties arising from the contribution of Coulombic friction.
The possible role of these effects during observations in diffusion experiments
is shortly discussed.Comment: 11 pages, 9 figure
Determination of the trap-assisted recombination strength in polymer light emitting diodes
The recombination processes in poly(p-phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination channel in PLEDs, which has not been considered until now. The dependence of the open-circuit voltage on light intensity enables us to determine the strength of this process. Numerical modeling of the current-voltage characteristics incorporating both Langevin and trap-assisted recombination yields a correct and consistent description of the PLED, without the traditional correction of the Langevin prefactor. At low bias voltage the trap-assisted recombination rate is found to be dominant over the free carrier recombination rate.
Neutron and proton drip lines using the modified Bethe-Weizsacker mass formula
Proton and neutron separation energies have been calculated using the
extended Bethe-Weizsacker mass formula. This modified Bethe-Weizsacker mass
formula describes minutely the positions of all the old and the new magic
numbers. It accounts for the disappearance of some traditional magic numbers
for neutrons and provides extra stability for some new neutron numbers. The
neutron and proton drip lines have been predicted using this extended
Bethe-Weizsacker mass formula. The implications of the proton drip line on the
astrophysical rp-process and of the neutron drip line on the astrophysical
r-process have been discussed.Comment: 5 pages, 2 figure
Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells
The photocurrent in polymer/fullerene blends is characterized as a function of bias at temperatures ranging from 125 to 300 K. Assuming a constant generation rate and bimolecular recombination, the results are numerically modeled within the drift-diffusion approximation. Bimolecular recombination is found to be a dominant factor in the field dependence of the photocurrent in the entire measured voltage range. Inclusion of field dependent geminate pair dissociation and recombination via the Onsager expressions gives a much stronger field dependence than experimentally observed. From the temperature dependence of the extracted mobilities, we can simultaneously estimate the broadening of the transporting highest occupied and lowest unoccupied molecular orbital levels. ©2005 American Institute of Physic
A simple measure of memory for dynamical processes described by the generalized Langevin equation
Memory effects are a key feature in the description of the dynamical systems
governed by the generalized Langevin equation, which presents an exact
reformulation of the equation of motion. A simple measure for the estimation of
memory effects is introduced within the framework of this description.
Numerical calculations of the suggested measure and the analysis of memory
effects are also applied for various model physical systems as well as for the
phenomena of ``long time tails'' and anomalous diffusion
Electrical Impedance of Acupuncture Meridians: The Relevance of Subcutaneous Collagenous Bands
Background: The scientific basis for acupuncture meridians is unknown. Past studies have suggested that acupuncture meridians are physiologically characterized by low electrical impedance and anatomically associated with connective tissue planes. We are interested in seeing whether acupuncture meridians are associated with lower electrical impedance and whether ultrasound-derived measures – specifically echogenic collagenous bands- can account for these impedance differences. Methods/Results: In 28 healthy subjects, we assessed electrical impedance of skin and underlying subcutaneous connective tissue using a four needle-electrode approach. The impedances were obtained at 10 kHz and 100 kHz frequencies and at three body sites- upper arm (Large Intestine meridian), thigh (Liver), and lower leg (Bladder). Meridian locations were determined by acupuncturists. Ultrasound images were obtained to characterize the anatomical features at each measured site. We found significantly reduced electrical impedance at the Large Intestine meridian compared to adjacent control for both frequencies. No significant decrease in impedance was found at the Liver or Bladder meridian. Greater subcutaneous echogenic densities were significantly associated with reduced impedances in both within-site (meridian vs. adjacent control) and between-site (arm vs. thigh vs. lower leg) analyses. This relationship remained significant in multivariabl
Steady-State L\'evy Flights in a Confined Domain
We derive the generalized Fokker-Planck equation associated with a Langevin
equation driven by arbitrary additive white noise. We apply our result to study
the distribution of symmetric and asymmetric L\'{e}vy flights in an infinitely
deep potential well. The fractional Fokker-Planck equation for L\'{e}vy flights
is derived and solved analytically in the steady state. It is shown that
L\'{e}vy flights are distributed according to the beta distribution, whose
probability density becomes singular at the boundaries of the well. The origin
of the preferred concentration of flying objects near the boundaries in
nonequilibrium systems is clarified.Comment: 10 pages, 1 figur
Inelastic collapse of a randomly forced particle
We consider a randomly forced particle moving in a finite region, which
rebounds inelastically with coefficient of restitution r on collision with the
boundaries. We show that there is a transition at a critical value of r,
r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath
which the particle undergoes inelastic collapse, coming to rest after an
infinite number of collisions in a finite time. The value of r_c is argued to
be independent of the size of the region or the presence of a viscous damping
term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st
Generalized dynamical density functional theory for classical fluids and the significance of inertia and hydrodynamic interactions
We study the dynamics of a colloidal fluid including inertia and hydrodynamic
interactions, two effects which strongly influence the non-equilibrium
properties of the system. We derive a general dynamical density functional
theory (DDFT) which shows very good agreement with full Langevin dynamics. In
suitable limits, we recover existing DDFTs and a Navier-Stokes-like equation
with additional non-local terms.Comment: 5 pages, 4 figures, 4 supplementary movie files, I supplementary pd
- …