6 research outputs found
Plant growth promotion driven by a novel Caulobacter strain
Soil microbial communities hold great potential for sustainable and ecologically compatible agriculture. Although numerous plant-beneficial bacterial strains from a wide range of taxonomic groups have been reported, very little evidence is available on the plant-beneficial role of bacteria from the genus Caulobacter. Here, the mode of action of a Caulobacter strain, designated RHG1, which had originally been identified through a microbial screen for plant growth-promoting (PGP) bacteria in maize (Zea mays) is investigated in Arabidopsis thaliana. RHG1 colonized both roots and shoots of Arabidopsis, promoted lateral root formation in the root, and increased leaf number and leaf size in the shoot. The genome of RHG1 was sequenced and was utilized to look for PGP factors. Our data revealed that the bacterial production of nitric oxide, auxins, cytokinins, or 1-aminocyclopropane-1-carboxylate deaminase as PGP factors could be excluded. However, the analysis of brassinosteroid mutants suggests that an unknown PGP mechanism is involved that impinges directly or indirectly on the pathway of this growth hormone
Paenibacillus polymyxa, a Jack of all trades
The bacterium Paenibacillus polymyxa is found naturally in diverse niches. Microbiome analyses have revealed enrichment in the genus Paenibacillus in soils under different adverse conditions, which is often accompanied by improved growth conditions for residing plants. Furthermore, Paenibacillus is a member of the core microbiome of several agriculturally important crops, making its close association with plants an interesting research topic. This review covers the versatile interaction possibilities of P. polymyxa with plants and its applicability in industry and agriculture. Thanks to its array of produced compounds and traits, P. polymyxa is likely an efficient plant growth-promoting bacterium, with the potential of biofertilization, biocontrol and protection against abiotic stresses. By contrast, cases of phytotoxicity of P. polymyxa have been described as well, in which growth conditions seem to play a key role. Because of its adjustable character, we propose this bacterial species as an outstanding model for future studies on host-microbe communications and on the manner how the environment can influence these interactions
Streptomyces as a plant's best friend?
Here we discuss the advantages of the majority of this versatile and diverse group of microorganisms for plant health and growth as demonstrated by their contribution to disease-suppressive soils, their antifungal and antibacterial activities, their ability to produce volatile compounds and their capacity to enhance plant biomass. Although much is still to be discovered about the colonization strategies and molecular interactions between plant roots and these microorganisms, they are destined to become important players in the field of plant growth-promoting rhizobacteria for agriculture.Streptomyces strains have a great potential for plant growth promotion or protection, but fundamental insights into the action mechanisms are urgently required.Streptomyces strains have a great potential for plant growth promotion or protection, but fundamental insights into the action mechanisms are urgently required
An affinity-enhanced, broadly neutralizing heavy chain-only antibody protects against SARS-CoV-2 infection in animal models
Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2-neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti-COVID-19 biologic that is now being evaluated in the clinic