16 research outputs found

    The Role of CFD in Modern Jet Engine Combustor Design

    Get PDF
    Recent advances in the application of computational fluid dynamics (CFD) for turbulent combustion with the relevance for gas turbine jet engines are discussed. Large eddy simulation (LES) has emerged as a powerful approach to handle the highly turbulent, unsteady and thermochemically non-linear flows in the practical combustors, and it is a matter of time for the industry to replace the conventional Reynolds averaged Navier-Stokes (RANS) approach by LES as the main CFD tool for combustor research and development. Since combustion is a subgrid scale phenomenon in LES, appropriate modelling is required to describe the SGS combustion effects on the resolved scales. Among the various available models, the flamelet approach is seen to be a promising candidate for practical application because of its computational efficiency, robustness and accuracy. A revised flamelet formulation, FlaRe, is introduced to outline the general LES methodology for combustion modelling and then used for a range of test cases to demonstrate its capabilities for both laboratory burners and practical engine combustors. The LES results generally compare well with the experimental measurements showing that the important physical processes are captured in the simulations

    Numerical investigation of a coupled blow-off/flashback process in a high-pressure lean-burn combustor

    No full text
    Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at take-off conditions. A previously-developed flamelet-based approach is used to model turbulence-combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilises in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream towards the injector as already described in other studies. This LES, however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.</p

    Numerical investigation of a coupled blow-off/flashback process in a high-pressure lean-burn combustor

    No full text
    Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at takeoff conditions. A previously developed flamelet-based approach is used to model turbulenceā€“combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilizes in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream toward the injector as already described in other studies. This large eddy simulation (LES), however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream, and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.</p

    Analysis of flame front breaks appearing in LES of inhomogeneous jet flames using flamelets

    No full text
    The physical mechanism leading to flame local extinction remains a key issue to be further understood. An analysis of large eddy simulation (LES) data with presumed probability density function (PDF) based closure (Chen etĀ al., 2020, Combust. Flame, vol.Ā 212, pp.Ā 415) indicated the presence of localised breaks of the flame front along the stoichiometric line. These observations and their relation to local quenching of burning fluid particles, together with the possible physical mechanisms and conditions allowing their appearance in LES with a simple flamelet model, are investigated in this work using a combined Lagrangian-Eulerian analysis. The Sidney/Sandia piloted jet flames with compositionally inhomogeneous inlet and increasing bulk speeds, amounting to respectively 70 and 90% of the experimental blow-off velocity, are used for this analysis. Passive flow tracers are first seeded in the inlet streams and tracked for their lifetime. The critical scenario observed in the Lagrangian analysis, i.e., burning particles crossing extinction holes on the stoichiometric iso-surface, is then investigated using the Eulerian control-volume approach. For the 70% blow-off case the observed flame front breaks/extinction holes are due to cold and inhomogeneous reactants that are cast onto the stoichiometric iso-surface by large vortices initiated in the jet/pilot shear layer. In this case an extinction hole forms only when the strain effect is accompanied by strong subgrid mixing. This mechanism is captured by the unstrained flamelets model due to the ability of the LES to resolve large-scale strain and considers the SGS mixture fraction variance weakening effect on the reaction rate through the flamelet manifold. Only at 90% blow-off speed the expected limitation of the underlying combustion model assumption become apparent, where the amount of local extinctions predicted by the LES is underestimated compared to the experiment. In this case flame front breaks are still observed in the LES and are caused by a stronger vortex/strain interaction yet without the aid of mixture fraction variance. The reasons for these different behaviours and their implications from a physical and modelling point of view are discussed in this study.</p
    corecore