15 research outputs found

    B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers

    Get PDF
    Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells. However, the effective use of anti-CD20 treatment now also reveals an important role for B cells in MS patients. The results from this treatment put forward T-cell activation rather than antibody production by B cells as a driving force behind MS. The main question of how their interaction provokes both B and T cells to infiltrate the CNS and cause local pathology remains to be answered. In this review, we highlight key pathogenic events involving B and T cells that most likely contribute to the pathogenesis of MS. These include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating lymphocyte subsets in MS patients and discuss how these are defined by mechanisms such as antigen presentation, co-stimulation and cytokine production in the periphery. Furthermore, the potential impact of genetic variants and viral triggers on candidate subsets will be debated in the context of MS

    The association of Epstein-Barr virus infection with CXCR3+ B-cell development in multiple sclerosis: impact of immunotherapies

    Get PDF
    Epstein–Barr virus (EBV) infection of B cells is associated with increased multiple sclerosis (MS) susceptibility. Recently, we found that CXCR3-expressing B cells preferentially infiltrate the CNS of MS patients. In chronic virus-infected mice, these types of B cells are sustained and show increased antiviral responsiveness. How EBV persistence in B cells influences their development remains unclear. First, we analyzed ex vivo B-cell subsets from MS patients who received autologous bone marrow transplantation (n = 9), which is often accompanied by EBV reactivation. The frequencies of nonclass-switched and class-switched memory B cells were reduced at 3–7 months, while only class-switched B cells returned back to baseline at 24–36 months posttransplantation. At these time points, EBV DNA load positively correlated to the frequency of CXCR3+

    Induction of brain-infiltrating T-bet–expressing B cells in multiple sclerosis

    Get PDF
    Objective: Results from anti-CD20 therapies demonstrate that B- and T-cell interaction is a major driver of multiple sclerosis (MS). The local presence of B-cell follicle-like structures and oligoclonal bands in MS patients indicates that certain B cells infiltrate the central nervous system (CNS) to mediate pathology. Which peripheral triggers underlie the development of CNS-infiltrating B cells is not fully understood. Methods: Ex vivo flow cytometry was used to assess chemokine receptor profiles of B cells in blood, cerebrospinal fluid, meningeal, and brain tissues of MS patients (n = 10). Similar analyses were performed for distinct memory subsets in the blood of untreated and natalizumab-treated MS patients (n = 38). To assess T-bet(CXCR3)+ B-cell differentiation, we cultured B cells from MS patients (n = 21) and healthy individuals (n = 34) under T helper 1- and TLR9-inducing conditions. Their CNS transmigration capacity was confirmed using brain endothelial monolayers. Results: CXC chemokine receptor 3 (CXCR3)-expressing B cells were enriched in different CNS compartments of MS patients. Treatment with the clinically effective drug natalizumab prevented the recruitment of CXCR3high IgG1+ subsets, corresponding to their increased ability to cross CNS barriers in vitro. Blocking of interferon-Îł (IFNÎł) reduced the transmigration potential and antigen-presenting function of these cells. IFNÎł-induced B cells from MS patients showed increased T-bet expression and plasmablast development. Additional TLR9 triggering further upregulated T-bet and CXCR3, and was essential for IgG1 switching. Interpretation: This study demonstrates that T-bethigh IgG1+ B cells are triggered by IFNÎł and TLR9 signals, likely contributing to enhanced CXCR3-mediated recruitment and local reactivity in the CNS of MS patients. ANN NEUROL 2019

    The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis

    Get PDF
    In MS, B cells survive peripheral tolerance checkpoints to mediate local inflammation, but the underlying molecular mechanisms are relatively underexplored. In mice, the MIF pathway controls B-cell development and the induction of EAE. Here, we found that MIF and MIF receptor CD74 are downregulated, while MIF receptor CXCR4 is upregulated in B cells from early onset MS patients. B cells were identified as the main immune subset in blood expressing MIF. Blocking of MIF and CD74 signaling in B cells triggered CXCR4 expression, and vice versa, with separate effects on their proinflammatory activity, proliferation, and sensitivity to Fas-mediated apoptosis. This study reveals a new reciprocal negative regulation loop between CD74 and CXCR4 in human B cells. The disturbance of this loop during MS onset provides further insights into how pathogenic B cells survive peripheral tolerance checkpoints to mediate disease activity in MS

    T helper 17.1 cells associate with multiple sclerosis disease activity: Perspectives for early intervention

    Get PDF
    Interleukin-17-expressing CD4 + T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6 + CXCR3 +), and not Th17 (CCR6 + CXCR3 -) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6 + and CCR6 - CD8 + T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6 + CXCR3 + CCR4 -) expressed the highest very late antigen-4 levels and selectively accumulated in natalizumab-treated patients who remained free of clinical relapses. This was not found in patients who experienced relapses during natalizumab treatment. The enhanced potential of Th17.1 cells to infiltrate the central nervous system was supported by their predominance in cerebrospinal fluid of early multiple sclerosis patients and their preferential transmigration across human brain endothelial layers. These findings reveal a dominant contribution of Th1-like Th17 subpopulations, in particular Th17.1 cells, to clinical disease activity and provide a strong rationale for more specific and earlier use of T cell-targeted therapy in multiple sclerosis

    Brain-homing CD4+ T cells display glucocorticoid-resistant features in MS

    Get PDF
    Objective To study whether glucocorticoid (GC) resistance delineates disease-relevant T helper (Th) subsets that home to the CNS of patients with early MS. Methods The expression of key determinants of GC sensitivity, multidrug resistance protein 1 (MDR1/ ABCB1) and glucocorticoid receptor (GR/NR3C1), was investigated in proinflammatory Th subsets and compared between natalizumab-treated patients with MS and healthy individuals. Blood, CSF, and brain compartments from patients with MS were assessed for t

    The association of Epstein-Barr virus infection with CXCR3+ B-cell development in multiple sclerosis impact of immunotherapies

    Get PDF
    Epstein-Barr virus (EBV) infection of B cells is associated with increased multiple sclerosis (MS) susceptibility. Recently, we found that CXCR3-expressing B cells preferentially infiltrate the central nervous system of MS patients. In chronic virus-infected mice, these types of B cells are sustained and show increased antiviral responsiveness. How EBV persistence in B cells influences their development remains unclear. First, we analyzed ex vivo B-cell subsets from MS patients who received autologous bone marrow transplantation (n=9), which is often accompanied by EBV reactivation. The frequencies of non-class-switched and class-switched memory B cells were reduced at 3-7 months, while only class-switched B cells returned back to baseline at 24-36 months post-transplantation. At these time points, EBV DNA load positively correlated to the frequency of CXCR3+ , and not CXCR4+ or CXCR5+ , class-switched B cells. Second, for CXCR3+ memory B cells trapped within the blood of MS patients treated with natalizumab (anti-VLA-4 antibody n=15), latent EBV infection corresponded to enhanced in vitro formation of anti-EBNA1 IgG-secreting plasma cells under germinal center-like conditions. These findings imply that EBV persistence in B cells potentiates brain-homing and antibody-producing CXCR3+ subsets in MS. This article is protected by copyright. All rights reserved

    The Role of Autoimmunity-Related Gene CLEC16A in the B Cell Receptor-Mediated HLA Class II Pathway

    No full text
    C-type lectin CLEC16A is located next to CIITA, the master transcription factor of HLA class II (HLA-II), at a susceptibility locus for several autoimmune diseases, including multiple sclerosis (MS). We previously found that CLEC16A promotes the biogenesis of HLA-II peptide-loading compartments (MIICs) in myeloid cells. Given the emerging role of B cells as APCs in these diseases, in this study, we addressed whether and how CLEC16A is involved in the BCR-dependent HLA-II pathway. CLEC16A was coexpressed with surface class II-associated invariant chain peptides (CLIP) in human EBV-positive and not EBV-negative B cell lines. Stable knockdown of CLEC16A in EBV-positive Raji B cells resulted in an upregulation of surface HLA-DR and CD74 (invariant chain), whereas CLIP was slightly but significantly reduced. In addition, IgM-mediated Salmonella uptake was decreased, and MIICs were less clustered in CLEC16A-silenced Raji cells, implying that CLEC16A controls both HLA-DR/ CD74 and BCR/Ag processing in MIICs. In primary B cells, CLEC16A was only induced under CLIP-stimulating conditions in vitro and was predominantly expressed in CLIPhigh naive populations. Finally, CLIP-loaded HLA-DR molecules were abnormally enriched, and coregulation with CLEC16A was abolished in blood B cells of patients who rapidly develop MS. These findings demonstrate that CLEC16A participates in the BCR-dependent HLA-II pathway in human B cells and that this regulation is impaired during MS disease onset. The abundance of CLIP already on naive B cells of MS patients may point to a chronically induced stage and a new mechanism underlying B cell-ediated autoimmune diseases such as MS

    Pregnancy-induced effects on memory B-cell development in multiple sclerosis

    Get PDF
    Abstract In MS, pathogenic memory B cells infiltrate the brain and develop into antibody-secreting cells. Chemokine receptors not only define their brain-infiltrating capacity, but also assist in their maturation in germinal centers. How this corresponds to pregnancy, as a naturally occurring modifier of MS, is underexplored. Here, we aimed to study the impact of pregnancy on both ex vivo and in vitro B-cell differentiation in MS. The composition and outgrowth of peripheral B cells were compared between 19 MS pregnant patients and 12 healthy controls during the third trimester of pregnancy (low relapse risk) and postpartum (high relapse risk). Transitional, and not naive mature, B-cell frequencies were found to drop in the third trimester, which was most prominent in patients who experienced a pre-pregnancy relapse. Early after delivery, these frequencies raised again, while memory B -cell frequencies modestly declined. CXCR4 was downregulated and CXCR5, CXCR3 and CCR6 were upregulated on postpartum memory B cells, implying enhanced recruitment into germinal center light zones for interaction with T follicular helper (TFH) cells. Postpartum memory B cells of MS patients expressed higher levels of CCR6 and preferentially developed into plasma cells under TFH-like in vitro conditions. These findings imply that memory B- cell differentiation contributes to postpartum relapse risk in MS
    corecore